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Abstract—Autonomous Underwater Vehicles (AUV) are key in
seabed warfare applications. Seabed observation can be realized
with an embedded camera processed with Artificial Intelligence
(AI) that performs real-time semantic segmentation of the un-
derwater images; this requires high performances and light-
weight neural networks. However, AUV embedded computing
capacity is limited and we cannot consider using a large network
to obtain high performances. Knowledge distillation (KD) is a
method for teaching a lightweight network with a large pre-
trained supervisor network. This makes KD an ideal solution
for training a network both highly efficient and capable of
operating in real time embedded on a AUV. In this context, we
evaluate different semantic segmentation network architectures,
initially designed for urban datasets such as Cityscapes, over an
underwater dataset: the semantic Segmentation of Underwater
IMagery (SUIM) dataset. In addition, we evaluate the capacity
of several KD methods to transfer knowledge in the underwater
image domain with the SUIM dataset.

Experiments demonstrate that the change of domain from
urban scenes to underwater scenes achieves good results, both
for semantic segmentation and KD.

Index Terms—knowledge distillation, semantic segmentation,
autonomous underwater vehicle

I. INTRODUCTION

The underwater domain holds a strategic importance for
defense applications. In particular, the surveillance of the
seabed is crucial for maintaining national security as it enables
the detection of suspicious objects like mines or other threats.
In this context, AUV play an important role in monitoring this
environment, ensuring that security forces can respond swiftly
and effectively to any underwater threat. However, those AUV
need to be equipped correctly to move underwater without
difficulty, and to detect threats.

Vision in underwater context can be performed using AI
techniques applied to images/videos acquired by underwater
acquisition systems. The sonar imagery approach can be very
efficient as it can work from long distance to the seabed
and with a good resolution [1]. Synthetic aperture sonar can
be used to get high-resolution images of the sea bed. An
alternative solution is to use an underwater optical imaging
system to get to know the environment around the AUV
[2]. Optical images in an underwater context have some
drawbacks, specifically the effective distance, but they allow
gathering real-time vision of the environment in front of the

AUV, and some works have managed to improve underwater
performances of optical devices [3].

With prior treatment, the AUV can use the video informa-
tion to navigate. This treatment can be performed by deep
learning with semantic segmentation algorithms. However, this
raises a question about real time usability. Deep learning
is sometimes not well suited to this application. From this
perspective, it is of paramount importance to use methods
of compression to obtain light-weight and real time neural
networks to compute the semantic segmentation of the envi-
ronment of the AUV. In addition, it goes together with the
notion of ecodesign. A compressed network will require less
energy per inference and it can therefore reduce the negative
environmental impact of the AUV.

Semantic segmentation, which aims to predict a class to
every pixel of an image, is an important topic in autonomous
navigation. Autonomous driving and AUV navigation require
indeed the knowledge of the environment to move correctly
and semantic segmentation provides this type of informa-
tion. Semantic segmentation has made great strides thanks
to advances in Deep Learning, mainly in the urban and
aerial domains [4], with databases such as ADE20K [5] or
Cityscapes [6]. More occasionally, a few adaptations have also
been made in the underwater domain [2], [7].

With the evolution of research in semantic segmentation,
two families of neural networks have emerged: one based on
the Fully Convolutional Network (FCN) architecture [8] and
another based on the Vision Transformer (ViT) architecture
[9]. Among the architectures that took the FCN as a base, some
of them achieved very good performances such as PSPNet [10]
or DeepLab [11]. On the side of the ViT-based architecture, we
can cite the Segformer architecture [12] that achieved stunning
performances on the semantic segmentation task. However,
regardless of the architecture used, those good performances
were obtained by wide architectures with many parameters.
This limits the possibilities of using these architectures for
real-time purposes. The computing capability of autonomous
AUV is greatly limited, thus using the best performing seman-
tic segmentation architectures is not an option. In addition,
large neural network inference on images after being trained
is energy consuming, and this must also be taken into account
to embed a neural network in an AUV with limited energy



capacity.
However, one can surpass those limitations by various

methods of neural network compression: pruning, quantization
[13]. Those methods aim to reduce the size of the neural
networks while limiting performance loss. A part of the
research in this domain is dedicated to reducing the number
of floating-point operations and the size of the models. One
can do it either by designing light-weight models, by trying
to remove useless parameters from wide architectures with
network pruning or by using parameters quantization to reduce
the size and the inference time of a neural network. These
methods will be efficient in terms of computation time but
often reduce the performance of the resulting compressed
neural networks. Another field of research tries to overcome
this issue: KD [14]. The main objective of KD is to train on a
specific task a light-weight neural network, called the student
network, under the supervision of a larger and more efficient
neural network, called the teacher network. By doing so, one
raises the performances of the student network without any
augmentation of its size and number of parameters.

In this paper, we propose an investigation about the use of
common semantic segmentation architectures and KD methods
in an underwater context. To the best of our knowledge, KD
were never exploited to train lightweight neural networks in
an underwater context. Our investigation therefore focuses on
the feasibility of using it in this domain. We focus on the
following points:
• We evaluate the performances of three semantic seg-

mentation architectures, designed for urban scene, on an
underwater database SUIM [7]. With this part of the work
we highlight the necessity to use KD for the training of
light-weight neural network.

• We evaluate three KD methods, specifically, two con-
ceived for FCN based architectures and one conceived
for ViT based architecture.

In Part II, we present related work in the fields of semantic
segmentation and KD. In Parts III and IV, we introduce some
generalities of semantic segmentation and KD and describe the
different methods considered for the investigation. Finally, we
present and analyze the results obtained with these methods
on the SUIM database in Part V.

II. RELATED WORK

A. Semantic segmentation

Semantic segmentation is among the most important fields
of computer vision with the constant development of au-
tonomous driving and aerial surveillance. The principle behind
semantic segmentation is the auto-encoder: an architecture
composed of an encoder and a decoder. Among the most basic
architectures of semantic segmentation, we can find the Fully
Convolutional Network (FCN) [8] that only use convolutions,
pooling and skip connections. PSPNet [10], which is a FCN,
introduces the pyramid pooling that is a method to focus on
the context by gathering information from different scales. The
exclusive use of the convolution can cause problems related

to receptive fields. When using conventional convolutions, the
collection of information between two distant areas of an
image can prove difficult due to the low receptive fields of
the convolution. An answer to this issue is the atrous/dilated
convolution used for example in DeepLab [11] and Dilation
[15], which are both FCN. This type of convolution allows
aggregating information from a wider zone without using
spatial pooling. It has to be noted that all these methods are
based on convolutional neural networks such as ResNet [16]
or VGG [17] if one needs good performances, or MobileNet
if one wants low latency computation.

Another way to tackle the receptive field issue is using a
self-attention-based architecture, and specifically a ViT based
architecture [9]. ViT uses the self-attention to gather infor-
mation of the whole images given as input to compute the
feature maps, even in the first layers of the network. ViT was
originally designed for tasks as detection or classification, but
recent works used this architecture for semantic segmentation.
A solution adopted by the SEgmentation TRansformer (SETR)
architecture [18] to use ViT for this task is to keep the encoder
and add a simple decoder. Other architectures like Swin Trans-
former or Segformer [12] complexify the Transformer encoder
by splitting it in several Transformer block. As for classical
CNN encoders, each Transformer block computes a feature
map with decreasing spatial size and increasing number of
channels as one goes deeper in the encoder. To go further, both
architectures propose several encoders with different sizes.
Other methods propose using the Transformer as a decoder
to compute the semantic segmentation. Mask2Former [19] for
example uses a variation of the Transformer with masked self-
attention to compute the semantic segmentation.

However, both convolution-based and Transformer-based
architectures are often quite cumbersome. This implies the
need to reduce their size so that they can be embedded in
AUV.

B. Knowledge distillation

The basic concept of KD was introduced with the classifica-
tion task by Hinton et al. [14], by comparing class probabilities
of teacher and student models. The main objective of KD is to
find a trade-off between the performance of the student model
after the distillation and its size. According to Yang et al. [20],
we can separate KD in three different types: response-based,
feature-based and relation-based KD. Firstly, response-based
KD corresponds to the distillation of information between
the outputs of teacher and student models. Secondly, feature-
based KD goes deeper in the networks by distilling knowledge
directly between feature maps of teacher and student models.
Finally, relation-based KD is a bit more complex as it distills
knowledge between different samples of the training dataset
or even different layers of the teacher and student models.
With the success of KD to obtain performing lightweight
classification models, this approach was also applied to the
semantic segmentation task.

Among the first work done in the domain of FCN distilla-
tion, Xie et al. [21] propose to distill two types of knowledge



from the teacher network to the student networks simultane-
ously: first, the zero-order knowledge, the pixel probabilities,
and secondly, the first-order knowledge, the sum of differences
between a pixel and its eight neighbors. He et al. [22] use the
knowledge from affinity maps to distill long-range informa-
tion from the teacher’s features to the student, it is feature-
based KD. To tackle inconsistency caused by the difference
in terms of shape between the teacher’s and the student’s
features, a pre-trained auto-encoder is used to transform the
teacher’s features. Lui et al. [23] propose structural KD in
two different ways. First, a pairwise distillation which aims
to transfer pairwise pixel similarity to the student network,
and secondly, a holistic distillation that uses a generative
adversarial learning approach to align the segmentation map
computed by the student network on the one of the teacher
network. The Cross Image Relational Knowledge Distillation
method (CIRKD) proposed by Yang et al. [24] is a relation-
based KD that distillates two types of knowledge pixel-to-pixel
information and pixel-to-region information. The distillation
is performed either on mini-batches or on a memory bank
composed of information extracted from the teacher network
during the previous steps of the training. With the Channel-
Spatial Knowledge Distillation method (CSKD), Karine et al.
[25] used the similarity between the channels and the pixels
of the intermediate feature maps to transfer knowledge from
the teacher network to the student network.

As ViT-based architectures are more recent than FCN-based
architectures, fewer methods have been implemented. Liu et
al. propose with TransKD [26] a way to make profit of the
specificities of the ViT architecture, and more specifically
the Segformer [12] architecture. In the encoding part of the
architecture, we find two types of information, the patch
embeddings, that are fed into the different Transformer blocks,
and the corresponding output feature maps. The distillation is
performed between the patch embeddings and the feature maps
of the student network and the teacher network.

III. CONSIDERED SEMANTIC SEGMENTATION
ARCHITECTURES

A. Principle

The objective of semantic segmentation is to assign to each
pixel of an image a class prediction. The networks used for this
task are generally composed of two parts. Firstly, an encoder
that extracts from the input image a feature map f ∈ Rd×w×h,
where w, h and d denote respectively the height, the width
and the number of channels of the feature map. Secondly,
a decoder that computes a logit prediction z ∈ RC×W×H
from the feature map, where W and H denote the height
and the width of the image and C denote the number of
classes considered for the prediction. Finally, the semantic
segmentation of the input image y ∈ RC×W×H is obtained
pixel by pixel by applying successively a softmax function, to
get the probability distribution corresponding to the pixel, and
an argmax function, to get the class prediction of the pixel.

For a classical semantic segmentation training, the loss
used to compare each pixel of the logit prediction of the

network with the corresponding ground truth is the cross-
entropy measurement:

LCE = − 1

HW

HW∑
i

CE
(
σ (zi) , y

GT
i

)
(1)

Here, yGTi denotes the ground truth label of the i-th pixel
of the image, zi denotes the i-th pixel of the network logit
prediction, σ denotes the softmax function and CE denotes
the cross-entropy loss.

B. Considered methods

1) FCN: The first FCN-based semantic segmentation ar-
chitecture considered is PSPNet. This semantic segmentation
architecture capture global contextual information based on
a pyramid pooling module. This module extracts features at
multiple spatial scales, enabling the network to understand the
overall structure of the scene while retaining the finest details.
PSPNet combines these multi-scale features via a pyramid
parsing module, which improves the representation of the
overall context in the final feature map.

The second FCN-based semantic segmentation architecture
considered in this investigation is DeepLabV3. This archi-
tecture uses atrous/dilated convolutions to extract features at
different levels of resolution while maintaining high spatial
resolution. DeepLabV3 also incorporates an improved version
of the spatial pyramid pooling technique, called Atrous Spatial
Pyramid Pooling (ASPP), to efficiently capture contextual
information at multiple scales. By combining these features,
DeepLabV3 improves segmentation performance, while mit-
igating the problem of loss of fine detail in segmentation
objects.

DeepLabV3 and PSPNet have proven their effectiveness
in the field of semantic segmentation by achieving state-of-
the-art performances across various benchmark. Given their
widespread adoption and established performance, these ar-
chitectures provide a strong basis for further developments in
knowledge distillation.

For both architectures, feature extraction is performed using
a ResNet18, ResNet101 or MobileNetV2 convolutional neural
network.

2) ViT: The ViT-based semantic segmentation architecture
considered in this investigation is Segformer. Segformer is a
semantic segmentation architecture that combines the strengths
of FCN-based and ViT-based architectures. It uses a hierar-
chical structure with a multistage feature extraction process,
where each stage applies a mix of convolutional layers and
Transformer encoders. This design allows Segformer to effi-
ciently capture both local and global contextual information.
There are several versions of Segformer, depending on the
size of the part dedicated to feature extraction. Unlike tradi-
tional ViT-based architectures, some versions of Segformer are
lightweight and computationally efficient, making it suitable
for real-time applications and knowledge distillation.



IV. CONSIDERED KNOWLEDGE DISTILLATION METHODS

A. Principle

When using KD to train a semantic segmentation network,
two losses are generally considered. The first loss is the
cross-entropy loss, presented in equation (1), used on the
student network logit prediction. The second loss compares
information between the teacher network and the student
network. According to the method, this KD loss LKD can
be divided into several sub-losses, and we will see that it
is the case for the different methods discussed in this paper.
Generally speaking, the global loss Lglobal to train student can
be formulated as follows:

Lglobal = LCE + λKD × LKD (2)

Here, λKD denotes a coefficient that weights KD loss
against the cross-entropy loss.

Inspired by Hinton et al., a basic way to formulate the KD
loss for semantic segmentation is to use the Kullback-Leibler
divergence to compare the logit predictions of the teacher zT

and the student zS . This loss can be formulated as follows:

LKD =
1
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Here, KL denotes the Kullback-Leibler divergence and
T denotes a temperature. With this basic loss function, the
knowledge is distilled from the teacher output to the student
output. Thus, KD is response based in this case.

B. Considered methods

In this section, the precise description of the different KD
methods considered for this investigation has been placed in
the appendices A, B and C.

1) Distillation from FCN: The first FCN-based method we
consider for this investigation is CIRKD, proposed by Yang
et al. [24]. This KD method is relation- and feature-based. It
means that information from different images is used for the
distillation during one step of the training, and particularly
the feature maps extracted from the encoder of the semantic
segmentation network are used. Three different distillations
are conducted during the training of a student network with
CIRKD, in addition to the classical KD, presented in equation
(3).

The details of the method are presented in Appendix A. The
complete distillation loss of the CIRKD method if formulated
as follows:

LCIRKD =LCE + LKD + λ1Lp2p−batchCIRKD

+ λ2Lp2p−memoryCIRKD + λ3Lp2r−memoryCIRKD

(4)

Here, Lp2p−batchCIRKD , Lp2p−memoryCIRKD and Lp2r−memoryCIRKD denote
the three distillation losses proposed by the method. The losses
LCE and LKD are the ones presented in equations (1) and (3)
respectively. Finally, λ1, λ2 and λ3 are weights set to 1, 0.1
and 0.1 respectively, as proposed in the original paper.

The second FCN-based method we consider for this investi-
gation is CSKD, proposed by Karine et al. [25]. This method

is feature- and response-based: information from the output
of the teacher network and from intermediate calculations
are used to distill information to the student. Two different
distillations are conducted in addition to the classical KD,
presented in equation (3). For each distillation one uses a
dedicated module to catch information of feature maps, a
Channel self-Attention Module (CAM) and a Position self-
Attention Module (PAM).

The details of the method are presented in Appendix B. The
complete distillation loss of the CSKD method if formulated
as follows:

LCSKD =LCE + λKDLKD
+ λPAMLPAMCSKD + λCAMLCAMCSKD

(5)

Here, LPAMCSKD and LCAMCSKD denote the two distillation losses
proposed by the method. The losses LCE and LKD are the
ones presented in equations (1) and (3) respectively. Finally,
λPAM and λCAM are weights for the PAM and CAM losses
set to 0.8 and 0.3 respectively, as proposed in the original
paper.

2) Distillation from ViT: The ViT-based method we con-
sider for this investigation is TransKD, proposed by Liu et
al. [26]. This method is specific to the Segformer semantic
segmentation architecture. As this architecture is based on the
ViT architecture, two types of features can be found in the
encoder: classical feature maps and patch embeddings. The
method proposes one distillation for each type of feature. More
specifically three variations of the patch embedding distillation
are proposed.

The details of the method are presented in Appendix C. The
complete distillation loss of the TransKD method if formulated
as follows:

LTransKD = LCE + LPETransKD + LFTransKD (6)

Here, LPETransKD and LFTransKD denote the two distillation
losses proposed by the method. Depending on the variation of
TransKD, LPETransKD takes different forms. The loss LCE is
the one presented in equation (1).

V. EXPERIMENTATION

A. Dataset

The underwater dataset we use for the investigation is
SUIM [7]. This dataset is composed of 1635 underwater
images annotated for semantic segmentation among 8 different
classes. As proposed by the authors of the dataset, images
are partitioned in two sub-datasets, 1525 are dedicated to the
training phase and 110 are dedicated to the validation and
testing phases. The size of images fluctuates from 375× 590
to 960× 1280 pixels, but most of the images (:80%) have a
size of 480× 640 pixels.

B. Experiments Details

1) Semantic Segmentation Architectures: For the different
experiments, we use three semantic segmentation architec-
tures. We use a DeepLabV3 and a PSPNet both with a
ResNet101 encoder as a teacher network for the CIRKD



and the CSKD methods as they were designed for FCN
architectures. The student networks used with these methods
are also DeepLabV3 and PSPNet with different encoders,
ResNet18 and MobileNetV2. For the experiments performed
on the TransKD method, we use as a Teacher a Segformer
with encoder MiT-B4 or MiT-B2 as TransKD is designed for
this architecture. The student network is a Segformer with a
MiT-B0 encoder.

2) Metric: The metric we use to evaluate the different
trained networks is the mean intersection over union (mIoU ).
For a given class c, the IoU is formulated as follows:

IoU =
|A ∩B|
|A ∪B|

(7)

Here, A denotes the area assigned to the class by the
evaluated network on the prediction of an image and B denotes
the area of the same class on the ground truth semantic
segmentation of the image. To obtain the mIoU we simply
mean the IoU over all the classes.

3) Training Setup: The training setup is the same for all
the experiments performed, with the exception of a few points
or training for architectures based on FCN or ViT. In terms
of data augmentation on the input images, we apply random
horizontal flip, random scaling from 0.5 to 2 and crop of
size 240 × 320. A stochastic gradient descent (SGD) with a
momentum of 0.9 is used to update the parameters of the
networks during training. The total number of iterations is
40000, and the trained network is tested on the validation
dataset every 800 iterations. The batch size is set to 16, but
experiments were also made with a batch size of 8. The
learning rate is where there is a difference between FCN- and
ViT-based architectures. For the FCN-based architectures, the
initial learning rate is set to 0.02 while it is set to 0.0002 for
the ViT-based architectures. In both cases the learning rate is
updated at each iteration by multipling it by (1− iter

Totaliter
)0.9,

where iter denotes the current iteration and Totaliter denotes
the total number of iterations.

C. Semantic Segmentation Results

In this section, we compare the results of the different
semantic segmentation architectures that we will use either
as students or teacher in the following.

In Table I and Table II, we show the results on the dataset
SUIM of the different FCN-based and ViT-based semantic
segmentation architectures respectively. A first observation we
can make is that regardless of the semantic segmentation
architecture family, a logical trend can be observed. The more
parameters a neural network has, the better its performance.
The only exception is the DeepLabV3 associated with a
MobileNetV2 encoder that has better performances than the
PSPNet associated with a ResNet18 encoder although it has
fewer parameters.

If we now compare the FCN- and ViT-based architectures,
it clearly appears that the different Segformers outperform the
convolutional networks. If we look first at the performances

of the Segformer MiT-B0, it outperforms FCN-based architec-
tures with a comparable number of parameters. If we look now
at the performances of the two other Segformer architectures,
they clearly outperform every other architectures. We partic-
ularly note the Segformer MiT-B2, which, with a reasonable
number of parameters, achieves high performances.

TABLE I
RESULTS ON SUIM OF SEMANTIC SEGMENTATION ON THE DIFFERENT

FCN-BASED ARCHITECTURES. R AND MN DENOTE RESNET AND
MOBILENET ENCODERS RESPECTIVELY.

Method Params (M) mIoU (%)
PSPNet R101 68.1 69.50
DeepLabV3 R101 61.1 69.66
DeepLabV3 R18 13.6 67.72
PSPNet R18 12.9 64.60
DeepLabV3 MNV2 3.2 66.03

TABLE II
RESULTS ON SUIM OF SEMANTIC SEGMENTATION ON THE DIFFERENT

VIT-BASED ARCHITECTURES.

Method Params (M) mIoU (%)
Segformer MiTB4 64.0 72.20
Segformer MiTB2 27.4 70.92
Segformer MiTB0 3.7 68.37

However, it is worth noting that for both FCN- and ViT-
based architectures, there is a relatively large gap between
the performances of the lightest and heaviest neural networks.
This justifies the use of KD in this context, to improve the
performances of the DeepLabV3 ResNet18, the DeepLabV3
MobileNetV2, the PSPNet ResNet18 and the Seformer MiT-
B0.

D. Knowledge Distillation Results

1) Results: In this section, we analyze the results obtained
on the SUIM database with the different KD methods pre-
sented in Part IV. In Table III and Table IV, we present
the results of the different KD methods applied to the neural
network studied in the previous part. The Table III regroups
the results of the CIRKD and the CSKD methods applied
to the FCN-based semantic segmentation neural networks
DeepLbV3 and PSPNet, while Table IV regroups the results
of the different TransKD methods applied to the ViT-based
semantic segmentation neural network Segformer.

It is worth noting that the results obtained with those
methods on the Cityscapes dataset are very good, for all pairs
of teacher and student CIRKD, CSKD and TransKD methods
allow improving the performances of the student.

For the FCN-based architectures, depending on the choice
of the student and the teacher, the results can be significantly
different. If we first look at the training performed with the
DeepLabV3 ResNet101 as a teacher, using CSKD seems to be
more pertinent associated with this teacher as every student
trained with CSKD and supervised by it outperforms the
same student trained with CIRKD. Moreover, for all students,



Input image Ground truth DeepLabV3
R18 Student

CIRKD [24] CSKD [25] Segformer
MiT-B0
Student

TransKD Base
[26]

TransKD EA
[26]

TransKD
GLMixer [26]

Fig. 1. Qualitative semantic segmentation results on the SUIM dataset. First two columns represent the considered image and the corresponding ground truth.
Next three columns correspond to the results of CIRKD and CSKD methods using a student DeepLabV3 ResNet18. Last four columns correspond to the
results of the three variations of TransKD methods using a student Segformer MiT-B0.

TABLE III
RESULTS ON SUIM OF KD ON THE DIFFERENT FCN-BASED

ARCHITECTURES. THE LETTER T DENOTES THE TEACHER NETWORKS,
AND THE LETTER S DENOTES THE STUDENT NETWORKS. R AND MN

DENOTE RESNET AND MOBILENET ENCODERS RESPECTIVELY.

Method Params (M) mIoU (%)
T: DeepLabV3 R101 61.1 69.66
S: DeepLabV3 R18

13.6
67.72

+ CIRKD 65.73
+ CSKD 68.57
S: DeepLabV3 MNV2

3.2
66.03

+ CIRKD 64.66
+ CSKD 65.61
S: PSPNet R18

12.9
64.60

+ CIRKD 64.41
+ CSKD 66.86
T: PSPNet R101 68.1 70.08
S: DeepLabV3 R18

12.9
64.60

+ CIRKD 67.75
+ CSKD 66.70
S: PSPNet R18

13.6
67.72

+ CIRKD 69.98
+ CSKD 68.63

TABLE IV
RESULTS ON SUIM OF KD ON THE DIFFERENT VIT-BASED

ARCHITECTURES. THE LETTER T DENOTES THE TEACHER NETWORKS,
AND THE LETTER S DENOTES THE STUDENT NETWORKS.

Method Params (M) mIoU (%)
T: Segformer MiT-B2 27.4 70.92
S: Segformer MiT-B0

4.6
68.37

+ TransKD-Base 67.71
+ TransKD-EA 68.31
+ TransKD-GLMixer 68.58
T: Segformer MiT-B4 64.0 72.20
S: Segformer MiT-B0

4.6
68.37

+ TransKD-Base 62.15
+ TransKD-EA 62.77
+ TransKD-GLMixer 65.11

the performance obtained after training with CIRKD was
lower than that obtained with conventional training without
KD. For its part, with the exception of the DeepLabV3
MobileNetV2 student, all the training carried out with CSKD
improved the performance of the student. In conclusion, the
best performance is obtained from CSKD with a DeepLabV3
ResNet101 teacher. However, the best results are obtained
when the same architecture is used as a teacher and student,
in this case a DeepLab ResNet101 teacher and a DeepLab
ResNet18 student.

Regarding to the training performed with the PSPNet
ResNet101 as a teacher, the results are completely different.
This time the CIRKD method allows obtaining better results
than the CSKD method. In both cases, the performances of
the student trained with a KD method are better than those
obtained with a student trained without KD. In the same way
as above, the student with the same architecture as the teacher
obtains the better performances, in this case the PSPNet
ResNet18 with the PSPNet ResNet101 teacher.

As for the FCN-based architectures, the result of KD on
ViT-based architecture is very dependent on the choice of the
student and the teacher. If we consider first the Segformer
MiT-B2 teacher, the results are mixed. For all the TransKD
variations, the performances of the student trained with KD
are very close to the results of the student trained without,
and only the TransKD-GLMixer allows to barely exceed it.

The different trainings performed with the Segformer MiT-
B4 teacher are quite disappointing. None of the methods works
with this choice of teachers. In all cases, the performance of
the student trained with TransKD is far inferior to that of the
student trained alone. The process of KD in this case doesn’t
transmit information, but rather loses it.

We show in fig. 1 some results of KD on the test dataset
of SUIM. A first observation can be made is that for all
images, the DeepLabV3 ResNet18 student seems to offer
smoother segmentation than the MiT-B0 Segformer. The most



obvious example is the boundary between classes. For the
DeepLabV3 ResNet18 they are clearly defined, even if they
sometimes stray from the class boundaries of ground truth. On
the contrary, for the Segformer MiT-B0, boundaries are noisy,
even if the zones correspond to the right classes in relation
to the ground truth. After the application of the different KD
methods, we observe for all students an amelioration in the
segmentation. For the DeepLabV3 ResNet18, the segmentation
is more accurate and for the Segformer MiT-B0, boundaries
are less noisy. If we compare the results of the students after
KD, similar results can be observed for the first image. For the
next two images, there is confusion for some classes for all
students. For the second image, a class is incorrectly predicted
by the Segformer MiT-B0 students trained with TransKD,
whereas it was correctly predicted without knowledge dis-
tillation. For the last image, it is the DeepLabV3 ResNet18
students trained with CIRKD and CSKD that fail to correctly
predict a class in the background. We conclude, however, that
in all cases, there is still room for improvement to get closer
to the ground truth.

2) Interpretation: The poor results of the CIRKD method in
our investigation can be explained by the choice of the dataset.
This method is based on a memory bank composed of pixel
and region embeddings collected during the training. However,
the SUIM dataset is very uneven in terms of class distribution.
For example, the class ”Robot” is very underrepresented in
the dataset, thus its representation in the memory bank can
be erroneous or incomplete and it can negatively impact the
training for this class.

Other results can be explained by the difference between
the number of parameters of both networks and by the size
of the dataset. As the SUIM dataset is relatively small in
comparison to datasets such as Cityscapes, the student has
a limited diversity in the knowledge that is transferred from
the teacher to learn the task of semantic segmentation. If in
addition to that, the difference in terms of parameter is too high
between the teacher and the student, it is harder for the student
to reproduce the behavior of the teacher network and it leads
to poor performances. It is the case for the Segformer MiT-B0
trained under the supervision of the Segformer MiT-B4, and
the DeepLabV3 MobileNetV2 trained under the supervision
of the DeepLab ResNet101.

However, it appears that KD can be effective in an under-
water context. The CSKD method shows good performance,
especially when the student and the teacher share the same
architecture. For the ViT-based architecture, the results are
mixed. If the networks trained without KD achieve good
performances, the best we can obtain with KD is to equalize
those performances. However, the KD in the field of ViT-
based architectures is still in development and improvement
is expected in the future. Another way of improving results
could be to expand the underwater dataset, either by finding
new images, which would involve both finding and annotating
these images, or by improving the data augmentation process
upstream of training.

VI. CONCLUSION

This paper presents an investigation of different KD meth-
ods for underwater image semantic segmentation. An alter-
native to KD would have been to reduce the size of large,
high-performing networks using the pruning or quantization
methods, mentioned in the introduction. We have not yet con-
sidered these methods, but it could be interesting to compare
them with KD to compare the performance obtained, both
in terms of network compression and semantic segmentation
quality.

The KD methods considered in this investigation were
CIRKD and CSKD for the FCN-based architectures and
TransKD for the ViT-based architectures. The results of the
investigation show that KD methods originally designed for
urban semantic segmentation applications, and therefore not
taking into account certain aspects such as water turbidity,
can be effective in an underwater context. However some
limitations reduce the effectiveness of KD such as the lim-
ited number of annotated images of underwater scenes. The
difference in the number of parameters between the teacher
and the student turned out to be a point of interest. Too great
difference added to the limited amount of data cancels out the
benefits of KD. The aim of this investigation was to evaluate
the ability to compress neural networks for embedding in
AUV. We investigated KD showing that it is possible to reduce
the size of the network by a factor of 5 for the FCN-based
architectures, while limiting the degration in performance.

As a perspective, we are planning to introduce a new KD
method which takes into account the problems mentioned
above. Another perspective would be to find a better set
of parameters for the training. For this study, the choice of
parameters, in particular the λ parameters used to weight
the different losses, were the same as those proposed in the
original papers of the methods used. One way of improving
the performance of the KD methods used could be to carry
out a grid search to optimize these parameters.
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APPENDIX A
CIRKD

A. Mini-batch-based Pixel-to-Pixel Distillation

The first distillation is performed among a mini-batch of
N images {xn}Nn=1. The objective is here to compute the
similarity between intermediate features obtained from the
images of the mini-batch for the student network and for the
teacher network. Then the similarities of the student network
are compared with the ones of the teacher network to obtain
a loss measurement. For the mini-batch, one considers the
spatially flattened intermediate feature maps on the network
that are noted

{
f ′n ∈ Rd×hw

}N
n=1

. For two images xk and xl
of the mini-batch, with k, l ∈ {1, 2, . . . , N}, the cross-image
pairwise similarity matrix is skl = fTk fl. Now we can compute
the similarity between images of the mini-batch, a first loss
can be formulated as follows:

Lp2p−batchCIRKD =
1

N2

N∑
k=1

N∑
l=1

Lp2p
(
sSkl, s

T
kl

)
(8)

with:

Lp2p
(
sSkl, s

T
kl

)
=

1

hw

hw∑
i=1

KL

(
σ

(
sSkl,i
τ

)
, σ

(
sTkl,i
τ

))
(9)

Here, τ denotes a temperature, sSkl and sTkl denote the
similarity between the k-th and the l-th feature maps of the
mini-batch for the student network and the teacher network
respectively, and for both student and teacher networks, skl,i
denote the i-th row of the similarity matrix.

B. Memory-based Pixel-to-Pixel Distillation

Mini-batch size is often small, this is why a second distil-
lation is performed using a memory bank. The memory bank
takes the form of a class aware pixel queue Qp updated with
a first-in-first-out strategy. For a class, every corresponding
pixel prediction is similar, thus it is not useful to fill the
memory bank with every pixel corresponding to this class.
In this context, at each iteration of the training, only a small
number of pixel embeddings extracted from the teacher feature
map are used to update the pixel queue.

With the same notations as before, for an image xn of a
given iteration, the flatten intermediates feature maps of the
student and teacher networks are respectively fSn ∈ Rd×hw
and fTn ∈ Rd×hw. One forms a matrix Vp ∈ RKp×d composed
of Kp pixel embeddings sampled from the pixel queue Qp.



Then, for both student and teacher, the similarity matrices
between the corresponding feature map and the matrix Vp are
computed as follows:

pS =
(
Vpf

S
n

)T ∈ Rhw×Kp , pT =
(
Vpf

T
n

)T ∈ Rhw×Kp (10)

Finally, the knowledge from the teacher is distilled to the
student by using the Kullback-Leibler divergence once again
between both similarities:

Lp2p−memoryCIRKD =
1

hw

hw∑
i=1

KL

(
σ

(
pSi
τ

)
, σ

(
pTi
τ

))
(11)

Here, for both student and teacher network, pi denote the
i-th row of the similarity matrix.

C. Memory-based Pixel-to-Region Distillation

The last distillation is similar to the memory-based pixel-
to-pixel distillation, except this time instead of using a queue
composed of pixel embedding, a region queueQr ∈ RC×Nr×d

composed of region embeddings is used, where Nr is the
length of the queue for each class. The region queue is
composed of C channels, one for each class, and each channel
is filled with Nr region embedding of size d. Instead of
updating the queue with several pixel embeddings at each
iteration, Qr is updated with the mean value of all pixel
embeddings for each class.

Here again, for an image xn of a given iteration, the
spatially flatten intermediates feature maps of the student
and teacher networks are respectively fSn ∈ Rd×hw and
fTn ∈ Rd×hw. One forms this time a matrix Vr ∈ RKr×d

composed of Kr pixel embeddings sampled from the region
queue Qr. Then, for both student and teacher, the similarity
between the corresponding feature map and the matrix Vr is
computed as follows:

rS =
(
Vrf

S
n

)T ∈ Rhw×Kr , rT =
(
Vrf

T
n

)T ∈ Rhw×Kr (12)

Finally, the knowledge from the teacher is distilled to the
student by using the Kullback-Leibler divergence once again
between both similarities:

Lp2r−memoryCIRKD =
1

hw

hw∑
i=1

KL

(
σ

(
rSi
τ

)
, σ

(
rTi
τ

))
(13)

D. Complete Distillation Process

Finally, the complete distillation loss of the CIRKD method
if formulated as follows:

LCIRKD =LCE + LKD + λ1Lp2p−batchCIRKD

+ λ2Lp2p−memoryCIRKD + λ3Lp2r−memoryCIRKD

(14)

Here, λ1, λ2 and λ3 are weights set to 1, 0.1 and 0.1
respectively.

APPENDIX B
CSKD

A. CAM

The objective of the CAM is to capture information between
the channels of a semantic segmentation network output. For
this, the module computes a matrix to weight the feature map
and select the channel information. This operation is done for
both student and teacher networks and the resulting matrix are
used for the distillation.

Given a feature map f ∈ Rd×h×w, it is flattened spatially to
get f ′ ∈ Rd×hw. To obtain the relation between the i-th and
the j-th channels of the feature map f ′, the channel attention
weights ωCAMji ∈ R are computed as follows:

ωCAMji =
exp

(
f ′
j ·f

′
i

τ

)
∑C
i=1 exp

(
f ′
j ·f ′

i

τ

) (15)

Here, f ′j and f ′i denote respectively the j-th and the i-th
rows of the feature map f ′, and τ denotes a temperature. Once
the channel attention weights ωji are computed, one can obtain
the weighted feature eCAM ∈ Rd×h×w, channel by channel,
as follows:

eCAMj = β

d∑
i=1

(
ωCAMji f ′i

)
+ f ′j (16)

The resulting channel of the final feature map is the original
feature map channel added to the weighted sum of all channels
multiplied by a parameter β learned during the training.

B. PAM

The objective of the PAM is to capture spatial information
between the pixels of a semantic segmentation network output.
As for the CAM, the starting point is the logit output of the
network f . With two additional convolution layers, two new
feature maps a, b ∈ Rdr×h×w are computed from f , with
dr < d, and they are flattened spatially to obtain feature maps
a, b ∈ Rdr×hw. Then similarly to the CAM, position attention
weights ωPAMji ∈ R are computed as follows:

ωPAMji =
exp

(
ai·bj
τ

)
∑C
i=1 exp

(
ai·bj
τ

) (17)

Here, ai and bj denote respectively the j-th and the i-th rows
of the feature map a and b, and τ denotes a temperature, the
same used in equation (15). For the next step one computes,
with another convolution layer, a new feature c ∈ Rd×h×w
and flatten it spatially to obtain c ∈ Rd×hw. Now the
position attention weights ωji are computed, one can obtain
the weighted feature ePAM ∈ Rd×h×w, position by position,
as follows:

ePAMj = α

hw∑
i=1

(
ωPAMji ci

)
+ aj (18)

The resulting position embedding of the final feature map at
the position j is the pixel at the position j in the feature map



a added to the weighted sum of all the pixels of the feature
map c multiplied by a parameter α learned during the training.

C. Complete Distillation Process

The metric used to compare the feature maps obtained
with CAM and PAM for the student network and the teacher
network is the centered kernel alignment (CKA) [27]. If one
notes e ,S and e ,T the feature obtained with CAM or PAM
for the student network and the teacher network respectively,
the CKA metric is defined as follows:

CKA
(
e ,S , e ,T

)
=

∥∥(e ,T )T e ,S∥∥2
F

‖(e ,S)T e ,S‖F ‖(e ,T )T e ,T ‖F
(19)

Here ‖·‖F denote the F -norm. this metric has values
between 0 and 1. From here, two losses can be defined, one
for CAM and the other for PAM:

LCAMCSKD = −log
(
CKA

(
eCAM,S , eCAM,T

))
(20)

LPAMCSKD = −log
(
CKA

(
ePAM,S , ePAM,T

))
(21)

Finally, the complete distillation loss of the CSKD method
if formulated as follows:

LCSKD =LCE + λKDLKD
+ λPAMLPAMCSKD + λCAMLCAMCSKD

(22)

Here, λPAM and λCAM are weights for the PAM and CAM
losses set to 0.8 and 0.3 respectively.

APPENDIX C
TRANSKD

A. Patch Embedding Distillation

For the patch embedding distillation, the basic method is
called TransKD-Base. To perform the distillation one uses a
module, composed of dense layers, on the student network
patch embeddings to match the size of the teacher patch
embeddings. Then a mean square error (MSE) loss is used to
compare the student and teacher patch embeddings as follows:

LPE−BaseTransKD =

4∑
i=1

λPE,iMSE
(
MPE−Base

(
eSi
)
, eTi
)

(23)

Here, eSi ∈ RN×dSi and eTi ∈ RN×dTi denote the patch
embedding of the i-th Transformer block of the encoder for
the student and the teacher respectively, with i ∈ {1, 2, 3, 4},
N the number of patches used for the patch embedding and dSi
and dTi the patch embedding size of the i-th Transformer block
for the student and the teacher respectively. Then, λPE denotes
a weight vector set to [0.1, 0.1, 0.5, 1]. Finally, MPE−Base
denotes the dense module used to resize the student patch
embedding.

The two other variations, TransKD-EA and TransKD-
GLMixer, use the previous method as a base. For TransKD-
EA, an embedding assistant is used in addition to the dense
layer module to obtain a more adapted version of the student
patch embedding. For the TransKD-GLMixer method, only the

last patch embedding distillation is modified. In addition to the
dense module, the student patch embedding passes through
another module composed of convolutions and attention com-
putations to mix global and local information. In both cases,
the patch embedding loss is also computed with the MSE.

B. Feature Map Distillation

The feature map distillation is common to all three varia-
tions of TransKD. Despite the fact that it is not commonly
done by most of feature-based distillation methods, informa-
tion is here distilled across different depths of the Segformer
encoder. For a given Transformer block of the student encoder,
one notes fSi the output feature map of this block, with i
the index of the Transformer block. To be compared with the
corresponding feature map fTi of the teacher encoder, fSi is
mixed with the feature map computed by the next Transformer
block with a module noted MF to obtain a new feature map
gSi . The operation is done as follows:

gSi =MF

(
fSi , g

S
i+1

)
(24)

Then, gSi passes through a convolution layer to obtain the
final feature maps ffinal,Si = conv3×3

(
gSi
)
. Finally, for each

Transformer block, ffinal,Si is compared to fTi using the
hierarchical context loss (HCL) [28]:

LFeatureTransKD =

4∑
i=1

λF,iHCL
(
ffinal,Si , fTi

)
(25)

Here, λF denotes a weight vector set to [1, 1, 1, 1].

C. Complete Distillation Process

Finally, the complete distillation loss of the TransKD
method if formulated as follows:

LTransKD = LCE + LPETransKD + LFTransKD (26)
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