
RL Methodology for consistent, explainable, and generalizable drone control

²

 1 ©2024 MBDA France, Conference on Artificial Intelligence for Defense

Methodology for explainable, consistent, and

generalizable Reinforcement Learning drone control

Robinson Denève

NEODE SYSTEMS

Paris, France

robinson.deneve@ neode-systems.com

Paul Chaudron

MBDA

Paris, France

paul.chaudron@mbda-systems.com

Axel Puig

NEODE SYSTEMS

Paris, France

axel.puig@neode-systems.com

Alexandre Kotenkoff

MBDA

Paris, France

alexandre.kotenkoff@mbda-systems.com

Mathias Formoso

MBDA

Paris, France

mathias.formoso@mbda-systems.com

Abstract — Future aircraft systems must adapt to the

unknowns of their environment. During a mission, a drone

swarm must adapt its flight formation. Each drone must reach

its set position as fast as possible while keeping his front sensor

in the same direction as the swarm. Moreover, the computation

must be done on board and is called at a high frequency. The

control algorithm of the drone must ensure complete reliability

of the aircraft system.

We developed a Deep Reinforcement Learning based control

algorithm that outperforms baseline algorithms. Using neural

networks in critical systems has many flaws that we were able to

overcome thanks to a precise methodology:

 Explainability: addressed through global and local

analyses. The use of the discretized neural network

allows a drone operator to validate the decision-

making process. The drone operator does not need to

be an AI expert.

 Consistency: addressed with a supervisory algorithm.

It ensures convergence to the set position while using

the trained Neural Network only when it leads to

better performances. It uses an allocation algorithm

and safeguards.

 Generalization: addressed with optimal training

scenarios. Adaptation capabilities checked by testing

on test scenarios.

Keywords — Deep Reinforcement Learning, Reliability,

Explainability, Consistency, Generalization, Swarm, UAV,

Control, Critical System

I. INTRODUCTION

Reinforcement Learning (RL) is a machine learning
method that helps an agent optimize its actions within a given
environment to maximize its cumulative reward. The agent
learns through trials and errors by interacting with its
environment. RL has gained considerable interest in the early
21st century, especially in automation [1]. More recently, deep
neural networks have been employed to address complex
nonlinear challenges, such as excelling at Atari games [2] and
mastering the board game of Go [3].

Deep Reinforcement Learning (DRL) is a subfield of
Reinforcement Learning (RL) that combines the principles of
RL with deep neural networks. In traditional RL, the agent's
policy, which maps observations to actions, is typically
represented using tabular methods or simple function
approximators. DRL allows the agent to learn more complex
and abstract representations of its environment, enabling it to
tackle intricate problems and high dimensional continuous
spaces. For instance, DRL has been used in [4] for assets
swarm coordination for collaborative combat and has shown
promising results. Control of drone fleets is a challenging task
that can greatly benefit from the power of DRL technology.

However, using deep neural networks comes with
drawbacks, primarily due to their intricate and nonlinear
opaque architectures [5, 6]. Additionally, the Reinforcement
Learning training process brings distinct challenges.

Explainability: The decision-making logic of a neural
network is inherently difficult to interpret. Although some
research suggests methods for analysis—like examining
neuron activation or the relevance of individual features, and
conducting semantic assessments of Deep Neural Networks
(DNN) [6]—these approaches are labor-intensive and require

RL Methodology for consistent, explainable, and generalizable drone control

²

 2 ©2024 MBDA France, Conference on Artificial Intelligence for Defense

deep expertise in Deep Learning. Additionally, it is possible
to perform both global and local analyses to dissect a neural
network's decision-making process. Employing a surrogate
model with a simpler architecture can also provide valuable
insights, facilitating easier analysis and explanation of the
neural network's behavior [7].

Consistency: The inconsistency of deep neural networks
is a notable concern; minor input variations can lead to
significant errors [8]. This vulnerability extends to networks
trained via reinforcement learning for tasks requiring
continuous control, pertinent to our study [10]. To mitigate
this issue, methods such as data augmentation and introducing
perturbations during training are commonly employed.
Additionally, using adversarial networks that deliberately
disrupt inputs and stability training techniques can further
enhance the robustness of these systems [9]. As input
disturbance are likely in real world applications, raw Deep
Neural Networks cannot be used in critical systems.

Generalization: The ability of neural networks trained
with Reinforcement Learning algorithms to adapt to new
environments is limited. Introducing a test environment can
help evaluate a network's generalization abilities [11].
Methods like data augmentation and L2 regularization,
decrease overfitting but do not assure comprehensive enough
generalization [12, 13]. More sophisticated strategies, such as
Meta Reinforcement Learning, increase adaptation
capabilities but necessitate retraining [15].

This article proposes a methodology that enables the
integration of Deep Reinforcement Learning (DRL)
algorithms in critical systems while addressing those issues:

 To the best of our knowledge, our pioneering
approach is the first to promote the discretization of
neural networks, although adopting more
explainable models has been previously suggested
[7]. This strategy not only enhances the consistency
and explainability of the model but does so through
a method that is straightforward to implement.

 We define a set of training scenarios designed to
confirm our model's ability to generalize across
diverse and complex trajectories.

 We introduce various methods to analyze neural
network behavior and decision-making processes
using local and global analysis [7].

 A supervisory algorithm is incorporated, using
baseline algorithms to maximize performance while
ensuring the drone accomplishes his objective thanks
to an allocation algorithm and safeguards.

II. FRAMEWORK AND ENVIRONMENT

A. Description of the Use Case

During operations, a swarm of drones must dynamically

adjust its formation depending on its environment. For
example, changes may be required due to technical
malfunctions or if a drone needs to leave the swarm to scout
ahead. Each drone is equipped with a front-facing sensor or
camera. It is essential for the drone to keep his sensor aligned
with the swarm’s overall direction in order to effectively

anticipate obstacles and keep watching targeted areas of the
environment.

As soon as a drone has received the new swarm flight
formation, it must relocate as quickly as possible to its set
position. Also, it must face the same direction as the rest of the
swarm, despite the drones executing complex maneuvers. All
computational processes must be conducted onboard and are
executed at high frequencies.

Fig.1 Illustration of a possible initialization and the expected drone behavior

As stated earlier, the drone must comply with several
constraints:

 Keep the same overall direction as the swarm. We
write 𝑑𝑠𝑤𝑎𝑟𝑚 and 𝑑𝑑𝑟𝑜𝑛𝑒 the direction of each asset.

The direction is defined by 𝑑asset =
𝑠𝑝𝑒𝑒𝑑asset

‖𝑠𝑝𝑒𝑒𝑑asset‖
.

We must have 𝑑swarm ∙ 𝑑drone ≥ 0

 Join the set position with a distance < 1500m and a
speed difference < 5%

Once it is close enough from its set position, another
algorithm takes over.

Absolute reliability is required in the control algorithm.

B. Environment and model

For this study, we used a fixed-wing UAV model that is

limited in speed and acceleration. This work could be adapted
to any drone model.

In the given simulation, the position of each drone within
the swarm is determined by two variables:

 The central position of the swarm, which is shared
among all drones.

 The specific position of the drone within the swarm,
relative to the swarm's center.

For the current study, we consider the horizontal
movement of drones, disregarding vertical speed control. We
treat the management of altitude and horizontal speed as
separate problems, as altitude control is relatively
straightforward and does not necessitate complex algorithms.
Furthermore, we employ the third dimension and flocking
algorithms to prevent collisions between drones by organizing
them in tiers [14].

 Thus, our primary focus lies in controlling the horizontal
speed of the drones.

C. Reinforcement Learning for UAV control

RL Methodology for consistent, explainable, and generalizable drone control

²

 3 ©2024 MBDA France, Conference on Artificial Intelligence for Defense

We developed a drone swarm control system using a Deep
Reinforcement Learning. The RL problem is defined as a
Partially Observable Markov Decision Process (POMDP). A
POMDP consists of: a set of possible states S, a set of actions
A, the probability of transitioning from one state to another P,
a reward function R and a set of observations O, which equals
to S if the process is fully observable.

At each time step t, the agent receives an observation 𝑜𝑡 ∈
𝑂 from the environment, which is based on the current state
𝑠𝑡 ∈ 𝑆. The agent then chooses an action 𝑎𝑡 ∈ 𝐴 based on its
policy π, which maps observations to a probability distribution
over actions. The environment then applies the action and the
current state to generate the next state 𝑠𝑡+1 and a reward
𝑟𝑡~𝑅(𝑠𝑡 , 𝑎𝑡) from the reward function.

 The goal of the agent is to find a policy that maximizes its
sum of expected discounted rewards over time:

𝜋 = argmax
𝜋

𝐽(𝜋)

𝐽(𝜋) = 𝔼𝜋 [∑ 𝛾𝑡𝑟𝑡(𝑠𝑡 , 𝑎𝑡)
∞

𝑡=0
]

where 𝛾 𝜖 [0, 1] denotes the discount factor.

1) Initialisation of training episodes

During the training process, the environment is initialised

with random initial conditions :

 Drone position: the drone spawns randomly around
the swarm's center.

 Drone heading: The initial heading of the drone is
random.

 Set position: The drone has to reach a random set
position within the swarm.

 Swarm trajectory: The swarm may follow either a
random turn with a random radius or move in a
straight line with a slight curve.

Fig. 2 - Illustration of random training initializations

2) Episode termination

 During the training process, we have to decide when an
episode ends. Gymnasium library introduced two variables to
check if an episode is finished: truncated and terminated [16].
Truncation allows RL algorithm to manage episode time
limits when the agent does not have access to a time-linked
observation.

 Our approach involves considering an episode as
terminated when the UAV reaches its set position.
Conversely, an episode is considered truncated when the time
limit is reached or if the drone gets too far from the set
position.

3) Observation and action space

The observation vector consists of the normalized relative
position, distance of the set position and the heading of the
swarm, all bounded between -1 and 1. The distance value
undergoes normalization with an increasing bijection from
[0, ∞] to [0,1], preserving all essential information.

The action encompasses the heading and speed magnitude
of the drone. We use the following functions:

𝑓preprocess: ℝ2 × ℝ → [−1,1]5

𝑁𝑁: [−1,1]5 → [−1,1]2

Consequently, the action is determined by:

action(observation) = 𝑁𝑁 (𝑓preprocess(observation)) Eq.1

D. Reward system

RL algorithm try to optimise an actor neural network in

order to maximise a reward function. This function shall score
an action based on its expected utility in achieving a specific
goal, thus guiding the actor towards the most effective
behaviours.

We design a simple reward function based on two
elements to evaluate the drone performance:

 A direction reward: whenever the model doesn't
follow the same direction as the swarm it gets a huge
penalty.

 Distance reward: at each time step, the agent receives
a reward. The closer the drone gets from its set points,
the greater the reward is.

E. Reinforcement training algorithm

In our study, we employed the Gymnasium environment

and Stable Baselines3 Python library for reinforcement
learning. We opted for Proximal Policy Optimization (PPO)
and Soft Actor-Critic (SAC) [17] algorithms due to their
current state-of-the-art status in the field. Although PPO
demonstrated faster training times, it did not achieve the same
level of performance after extended hours of training.

III. RELIABLE REINFORCEMENT LEARNING

METHODOLOGY.

We trained a reinforcement learning (RL) model using Soft

Actor-Critic (SAC) for two million steps on an eight-CPU

workstation. Optimal performance was achieved after one

million steps and 4.5 hours. As stated in the introduction,

using reinforcement learning brings some drawbacks:

 Consistency: The RL model may have an erratic

behavior in response to certain observations.

RL Methodology for consistent, explainable, and generalizable drone control

²

 4 ©2024 MBDA France, Conference on Artificial Intelligence for Defense

 Generalization: RL algorithms often underperform

in scenarios that differ from the training

environment.

 Explainability: The actions of the RL model may

not be interpretable enough to establish the trust of

drone operators. The model needs to be acceptable

for them.

These issues render RL impractical for critical systems,

where unpredictability causes significant risks for the system.

We propose a certification protocol that performs several

analyses to address these concerns.

A. Global Analysis, comparison with other algorithms

We evaluated the performance of our trained

reinforcement learning algorithm against more traditional
baseline algorithms on specific scenarios. These scenarios
were carefully selected to mimic the conditions the missile
pack is likely to encounter in the intended use case. The
primary objective of this comparison is to gain a global
understanding of the advantages brought about by employing
RL algorithms.

 Pursuit Algorithm (PURSUIT): The classical
pursuit algorithm directs an asset to intercept a
moving target by aiming at its current position. It has
been modified with a predictive component that aims
at a point slightly ahead of the target's location based
on its velocity. This modification enhances stability.
Additionally, the algorithm is designed to accelerate
when it falls behind the set position [18, 19].

Fig. 3 Illustration of the PURSUIT Algorithm functioning

 Proportional controller (PROPORTIONAL):
The proportional control algorithm calculates the
required set speed of the drone using the following
equation:

Set Speed = Swarm Speed + Correction Speed

With Correction Speed = 𝛾Position Target

Position Targeted is the relative position of the set
position in the drone reference frame and 𝛾 is a
positive constant such that 𝛾 ≪ 1.

Viewed from the swarm's perspective, the drone's
velocity relative to its target is defined as
𝛾 Position Targeted. The drone approaches its set
position by effectively reducing the relative distance.

The drone's direction closely matches that of the
swarm, so it complies with the direction constraint.

Fig. 4 Illustration of the PROP Algorithm functioning

1) Benchmark scenarios

In order to have a comprehensive understanding of the

upsides and downsides of the reinforcement learning agent.

We tested our model on 500 test episodes. Those episodes are

variation of the training episodes previously described. When

evaluating the models, we considered two key criteria:

 Approach speed: This metric represents the

average velocity at which the drone approaches its

set position, as measured in the swarm's reference

frame, during an entire episode.

 Compliance with the direction constraint: This

criteria ensures the drone keeps its heading aligned

with the one of the swarm.

a) Catch Up Scenario.

We assessed the algorithms' capabilities in a scenario

where the drone's initial position is situated behind the

swarm's center. The episode finishes when the drone reaches

a distance of x meters from the swarm. The drone has to catch

up the swarm.

In our experiments, both classical algorithms

demonstrated superior performance compared to the

reinforcement learning model, despite all algorithms

complying with the direction constraint. Among the classical

algorithms, the pursuit algorithm showed a slightly better

approach speed than the proportional controller.

 RL PURSUIT PROPORTIONAL

Average

approach

speed

(m/s)

54 57 56

b) Close up Scenario

One other scenario was implemented and tested. The

drone's initial position was randomly placed between 0 and

1500 meters away from the swarm. The episode concluded

when the drone reached a distance of 5 meters from the

swarm.

RL Methodology for consistent, explainable, and generalizable drone control

²

 5 ©2024 MBDA France, Conference on Artificial Intelligence for Defense

Once again, both classical algorithms (PURSUIT and

PROPORTIONAL) perform better than RL. Indeed, both of

them were able to join the set point with a precision of 5m

meters whereas RL model was only able to oscillate around

the set points with a range of 50 meters.

PROPORTIONAL performed slightly better and was

able to reach the set point with a precision of 2 meters and it

was faster than the PURSUIT.

c) Ahead spawn scenario

Eventually, we tested every algorithms on the ahead

spawn scenario. The drone spawns ahead of its set position.

It ends once it is 1500 meters away from its set position.

Our results revealed that RL outperformed both

algorithms by executing innovative and complex maneuvers.

PURSUIT failed to maintain the directional constraint, while

PROP managed only to decelerate while maintaining the

same heading as the swarm. In contrast, RL performed

zigzags allowing it to reach its set position faster as shown in

Fig. 5.

The model learned to perform a zigzag maneuver to travel

a longer distance to let the swarm catch it up.

Fig. 5 - Trajectory of the trained RL model and of PROPORTIONAL.

 RL PURSUIT PROPORTIONAL

Comments
Zigzag

maneuver

Unable to

respect

the

direction

constraint

Slow maneuver

Average

approach

speed (m/s)
117 × 68

2) Conclusion

A comprehensive analysis of the RL algorithm's behaviour

in the aforementioned scenarios provides valuable insights

into its strengths and limitations. Given the complexities and

constraints associated with RL, it is crucial to restrict its

application to situations where its advantages are the most

significant.

We propose implementing a supervisory algorithm
(SUPERVISED RL) that uses the optimal algorithm to
employ based on the drone position relative to its set position.
Using the results of the global analysis, we select the most
appropriate algorithm to ensure the best possible performance
depending on the drone position.

 The different algorithms are used according to the drone’s
relative position, following the allocation pattern presented in
Fig. 6.

Fig. 6 - Allocation of each algorithm made by the SUPERVISED RL

algorithm depending on the drone relative position.

B. Local Analysis

To ensure the reliability of our reinforcement learning

model, it is essential to analyze what precisely it is doing and
ensure that there is not any discontinuity or aberration that the
global analyses would have missed.

We analyzed the behavior of the RL on high-level
scenarios. In particular, we know that a zigzag maneuver is
carried out to optimize the catch-up time. Yet we do not know
exactly how this maneuver is performed and what specific
actions are chosen by the neural network. Moreover, his
behavior must be validated by a drone pilot/operator to ensure
that the actions are consistent and not risk failing in real life
environment. Indeed, not all the technical constraints were
taken into account during the development of the simulation
and we need to make sure that there are no backdoor in the
neural networks. Finally, we must ensure that there are no
aberrations in the decision-making process of the neural
network.

We are going to analyze the Neural Networks outputs from
a set of observations. Inputs of the Neural Network are from
ℝ3: relative position of the set point (ℝ2) and its heading (ℝ).
As we cannot analyses every value of this continuous space,
we are going to discretize it.

 We consider the three-dimensional set [−𝑋max, 𝑋max] ×
[−𝑌max, 𝑌max] × [−𝜋, 𝜋] discretized into a grid by a constant
vector Δstep = (Δ𝑥, Δ𝑦, Δ𝜃).

As the output of the Neural Network is only 2 scalars,
drone operators have only two values to analyze.

1) Visualisation of the NN outputs

We developed a custom visualization tool for analyzing

the neural network's decision-making process.

For each discretized heading, we generated a chart depicting
the network's decision based on the drone's relative position
to its set points. The drone is oriented with the chosen
discretized heading. In cell [0, 0], we present the decision
made when the drone is on its set points. In cell [0, 1000], we

RL Methodology for consistent, explainable, and generalizable drone control

²

 6 ©2024 MBDA France, Conference on Artificial Intelligence for Defense

illustrate the decision made when the drone is 1000 meters
ahead of its set point.

a) Speed Norm Analysis

We used a heat map (Fig. 7) to visualize the speed

magnitude ordered. Darker cells indicate slower drone

speeds. Our analysis revealed that when the drone is ahead of

the swarm position, it predominantly uses the slowest speed

available. In contrast, when the drone is behind its set

position, it prioritizes the highest speed to catch up. The

chosen speed when the drone is on its side is more intricate

and depends on the drone's orientation. These observed

behaviors are consistent with the drone effectively reaching

its set position. Observations are symmetrical, yet actions are

expected to be symmetrical; the asymmetry in the decision

process therefore reveals an inconsistency when the drone

operates beyond a given range.

Fig. 7 Heat map of the chosen speed when the drone is going in the same

direction as the swarm. [0,0] is the set position.

b) Heading Analysis

We used a 2D field of arrows to visualize the heading

chosen by the Neural Network. In those chart, the set point is

going straight from left to right. The drone's orientation is

determined by the chosen discretized heading, indicated by

the grey arrow. The relative heading chosen by the Neural

Network is also denoted by an arrow.

This visualization enabled us to approve the discretized

neural network's behavior, as we did not detect any

discontinuities. However, we identified inconsistencies

outside the network's domain of training, as shown in Figure

8. Specifically, when 𝑦 exceeds 20km, the network chooses

to maintain an almost straight course rather than moving

closer to its set position.

Fig. 8. Arrow field of the chosen heading when the drone is going in the same

direction as the swarm. [0,0] is the set position. The red rectangle highlights

an area where the Neural Network doesn’t choose the optimal heading.

When 𝑦 > 20 000 it chooses to go straight (green arrow) instead of getting

closer to the set position (blue arrow)

c) Conclusion

Thanks to those two interactive charts, we were able to

have a deep understanding of the model outputs. It

highlighted the fact that the Neural Network is consistent but

it has one flaw. The Neural Network is unable to generalize

when out of a given bound. To address this issue, we updated

the allocation map of SUPERVISED RL. When out of bound,

the proportional controller is going to overtake the control of

the drone. Otherwise, the Neural Network was validated by a

drone operator when it operates within the specified range.

Fig. 8 Updated SUPERVISED RL algorithm's allocation given the RL flaws.

d) Neural Network discretization

Even though we have conducted an in depth analysis of

the Neural Network on a discrete space. We are unable yet to

confirm that there no aberration or discontinuities when using

the Neural Network on a continuous space of observation.

Indeed, the step Δstep used to discretize the observation is

large in order to limit the number of point to analyze

manually. To solve this issue, we are going to use a grid

instead of the raw neural network function.

We are considering the 3 dimension grid Grid𝑁𝑁 of shape
(𝑁1, 𝑁2, 𝑁3) such that

Grid𝑁𝑁[𝑖, 𝑗, 𝑘] = 𝑁𝑁 (𝑓𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠(observation𝑖,𝑗,𝑘))

With observation𝑖,𝑗,𝑘 = (𝑖 × Δ𝑥, 𝑗 × Δ𝑦, 𝑘 × Δ𝜃)

We won’t use the formula Eq.1 to calculate an action given

an observation . Instead, we will use Grid𝑁𝑁 with the

following formula:

For a given observation vector, we consider

observation𝑖,𝑗,𝑘
̂ which represents its rounded value by

Δstep . Each element is rounded according to the

corresponding value in the Δstep vector. 𝑖, 𝑗, 𝑘 are the

quotients obtained by dividing each value of the observation

vector by Δstep.

We will consider:

actiondiscrete(observation) = Grid𝑁𝑁[𝑖, 𝑗, 𝑘]

= action(observation𝑖,𝑗,𝑘
̂)

RL Methodology for consistent, explainable, and generalizable drone control

²

 7 ©2024 MBDA France, Conference on Artificial Intelligence for Defense

e) Discretized model performances

We tested the discretized reinforcement learning model

(DISCRETE RL) performances on the Spawn Ahead

Scenario defined earlier to assess any potential loss in

performance compared to the original continuous Neural

Network (CONT. RL).

DISCRETE RL is able performs better than the raw

neural network. It respects the direction constraint and is

faster to meet its set position. This improvement can be

attributed to the discretization of the observation as the drone

takes the same decision across multiple time steps making it

more consistent.

 CONT. RL
DISCRETE

RL

Average

approach

speed

(m/s)

117 120

C. Ensuring convergence with safeguards

We propose another method to ensure that our model is

always able to meet his set position while benefiting from

the RL faster convergence speed.

If the input dimension of the observation is too large, a

manual local analysis would be too time consuming.

Moreover, we want to add extra safety features to our

algorithmic chain as we are working with critical system.

The system reliability cannot rely only on the drone

operator analysis as human mistakes are possible.

To do so, we are going to implement safeguards to our

algorithmic chain to ensure convergence on the set position

regardless of the reinforcement learning decisions.

a) Safeguards

We added two safeguards to guarantee convergence to

the set position while complying with the direction constraint:

 Direction Safeguard: If the drone is close from

breaking the direction constraint, the proportional

controller temporarily override the RL model until it

is more aligned with the swarm’s direction.

 Speed Safeguard: the drone’s speed is set to

minimum when it is in front of its set position and to

maximum when it is lagging behind.

We also changed the allocation pattern of SUPERVISED

RL. The bottom of the zone originally allocated to RL is

switch to PROPORTIONAL in order to form a cone. This

cone shape forces the drone to meet the set position when it

is on its sides.

Moreover, SUPERVISED RL is also going to use the

Safeguards when using RL algorithm.

Fig. 9 Updated SUPERVISED RL algorithm's allocation to ensure

convergence on the set position

b) Results

Safeguards allows the drone to regain its set position no

matter which decision is taken. We tested an algorithm

choosing random heading over 2000 iterations of the Spawn

ahead scenario. It met his set positions on 100% of the

episodes thanks to the Safeguards algorithm. It was still

slower than the other algorithms.

During the worst case of those 2000 iterations, Random

+ Safeguards took 526 seconds to meet his set position which

is comparable with the PROPORTIONAL algorithm

performance.

We trained a Reinforcement Learning model with

the safeguards. The training was 10% faster as the model

dictates only the heading.

We had the following performances across 500

episodes of the Spawn ahead scenario.

 CONT. RL PROPORTIONAL Discrete RL
Discrete RL +

Safeguards

Random +

Safeguards

Average

approach

speed (m/s)

117 68 120 107 61

DISCRETE

RL

Random +

Safeguards

DISCRETE

RL +

Safeguards

PROPORTIONAL

Worst

case

time to

meet

the set

position

(s)

186 526 189 868

RL Methodology for consistent, explainable, and generalizable drone control

²

 8 ©2024 MBDA France, Conference on Artificial Intelligence for Defense

The “Discrete RL + Safeguards” algorithm is unable

to be as fast as the other RL models due to non-optimal speed

constraints, particularly when the drone is on the side of its

set position. However, it ensures that the drone will reach it.

Moreover, it outperforms PROPOTIONAL, all while

complying with the direction constraint.

Thanks to those precise analyses, the SUPERVISED

RL algorithm uses the allocation pattern described in Fig. 10.

It uses Discrete RL to have an explainable algorithm. It also

uses Safeguards to ensure task completion and compliance

with the direction constraint.

D. Ensuring the generalisation capabilities of RL

In real life environment, drones perform complex and

unpredictable maneuvers. We couldn’t train our model on

every possible trajectory. Yet, our model was able to

generalize and meet a swarm in carrying out any trajectory as

we trained on the correct subset of scenario.

A full trajectory is a complex movement. But we can

break it down into simpler maneuvers and train our

Reinforcement Learning model on those simpler maneuvers.

As a trajectory is made out of straight lines and turns, we

trained our model on scenarios where the swarms performed

a straight line with a slight curb or a turn with a random turn

radius. To assess the generalization capabilities of the

reinforcement learning model, we trained and tested it across

two distinct environments. The model was trained on

trajectory’s segments and tested on full trajectories.

We compared the proportional controller against the

SUPERVISED RL model with all the improvement that have

been implemented:

 Discrete RL: to ensure that we an explainable

Neural Network.

 Safeguards so that the drone comply with the

constraints.

 Allocation patterns: RL is only used when it brings

better performances.

Those two algorithms are able to respect the direction

constraints while ensuring the drone to meet his set position.

They are also explainable thanks to in-depth analyses. We

tested the two different algorithms on 500 episodes. The

initialization was the same as the training scenario but the

swarm performs a much more complex trajectory. It performs

several random turns instead of just one. We ended the

simulation once the drone is 1500 meters away from his set

position as the SUPERVISED RL will also use the

proportional controller at this point.

We found out the SUPERVISED RL algorithm is faster

at joining the set position. Using the Reinforcement Learning

only where it brings better performances led to high

performance algorithm that complies with the use case

constraints.

 PROPORTIONAL SUPERVISED RL

Average

approach

speed

(m/s)

77 85

IV. CONCLUSION

 Our approach enhances the reliability of decision
algorithm based on reinforcement learning and AI. It
successfully addresses the major challenges associated with
reinforcement learning: generalization, consistency, and
explainability. This enables us to leverage the superior
performance of reinforcement learning in critical systems.
However, our discretization methodology may not be as
effective for tasks involving high-dimensional observation
inputs as the observation space might be too large to conduct
a local analysis. Moreover, integrating a supervision
algorithm and safeguards to ensure task completion is not
straightforward across all use cases.

ACKNOWLEDGMENT

The authors would like to thank the engineers who were
involved in this project for the quality of their contributions.

RL Methodology for consistent, explainable, and generalizable drone control

²

 9 ©2024 MBDA France, Conference on Artificial Intelligence for Defense

REFERENCES

[1] Bagnell, J. A., & Schneider, J. G. (2001, May).

Autonomous helicopter control using reinforcement

learning policy search methods. In Proceedings

2001 ICRA. IEEE International Conference on

Robotics and Automation (Cat. No. 01CH37164)

(Vol. 2, pp. 1615-1620). IEEE.

[2] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,

Antonoglou, I., Wierstra, D., & Riedmiller, M.

(2013). Playing atari with deep reinforcement

learning. arXiv preprint arXiv:1312.5602.

[3] Silver, D., Schrittwieser, J., Simonyan, K.,

Antonoglou, I., Huang, A., Guez, A., ... & Hassabis,

D. (2017). Mastering the game of go without human

knowledge. nature, 550(7676), 354-359.

[4] Bois, J., Puig, A., Rullière, L., Teboul, Y., Ossola,

M., Kotenkoff, A., & Formoso, M. (2022,

November). Heterogeneous swarming for

collaborative combat using Multi-agent Deep

Reinforcement Learning. In Conference on Artificial

Intelligence for Defense.

[5] Samek, W., Wiegand, T., & Müller, K. R. (2017).

Explainable artificial intelligence: Understanding,

visualizing and interpreting deep learning models.

arXiv preprint arXiv:1708.08296.

[6] Xu, F., Uszkoreit, H., Du, Y., Fan, W., Zhao, D., &

Zhu, J. (2019). Explainable AI: A brief survey on

history, research areas, approaches and challenges.

In Natural Language Processing and Chinese

Computing: 8th CCF International Conference,

NLPCC 2019, Dunhuang, China, October 9–14,

2019, Proceedings, Part II 8 (pp. 563-574). Springer

International Publishing.

[7] Puiutta, E., & Veith, E. M. (2020, August).

Explainable reinforcement learning: A survey. In

International cross-domain conference for machine

learning and knowledge extraction (pp. 77-95).

Cham: Springer International Publishing.

[8] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J.,

Erhan, D., Goodfellow, I., & Fergus, R. (2013).

Intriguing properties of neural networks. arXiv

preprint arXiv:1312.6199.

[9] Zheng, S., Song, Y., Leung, T., & Goodfellow, I.

(2016). Improving the robustness of deep neural

networks via stability training. In Proceedings of the

ieee conference on computer vision and pattern

recognition (pp. 4480-4488).

[10] Weng, T. W., Dvijotham, K. D., Uesato, J., Xiao, K.,

Gowal, S., Stanforth, R., & Kohli, P. (2019,

September). Toward evaluating robustness of deep

reinforcement learning with continuous control. In

International Conference on Learning

Representations.

[11] Cobbe, K., Klimov, O., Hesse, C., Kim, T., &

Schulman, J. (2019, May). Quantifying

generalization in reinforcement learning. In

International conference on machine learning (pp.

1282-1289). PMLR.

[12] Wang, K., Kang, B., Shao, J., & Feng, J. (2020).

Improving generalization in reinforcement learning

with mixture regularization. Advances in Neural

Information Processing Systems, 33, 7968-7978.

[13] Lee, K., Lee, K., Shin, J., & Lee, H. (2019). Network

randomization: A simple technique for

generalization in deep reinforcement learning. arXiv

preprint arXiv:1910.05396.

[14] Olfati-Saber, R. (2006). Flocking for multi-agent

dynamic systems: Algorithms and theory. IEEE

Transactions on automatic control, 51(3), 401-420.

[15] Mandi, Z., Abbeel, P., & James, S. (2022). On the

effectiveness of fine-tuning versus meta-

reinforcement learning. arXiv preprint

arXiv:2206.03271.

[16] Farama Foundation. (2023). Handling time limits.

Retrieved from

https://gymnasium.farama.org/tutorials/gymnasium_

basics/handling_time_limits/

[17] Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S.

(2018, July). Soft actor-critic: Off-policy maximum

entropy deep reinforcement learning with a

stochastic actor. In International conference on

machine learning (pp. 1861-1870). PMLR.

[18] Scharf, L. L., Harthill, W. P., & Moose, P. H.

(1969). A comparison of expected flight times for

intercept and pure pursuit missiles. IEEE

Transactions on Aerospace and Electronic Systems,

(4), 672-673.

[19] Coulter, R. C. (1992). Implementation of the pure

pursuit path tracking algorithm (pp. 92-01). Carnegie

Mellon University, The Robotics Institute.

RL Methodology for consistent, explainable, and generalizable drone control

²

 10 ©2024 MBDA France, Conference on Artificial Intelligence for Defense

V. ANNEX

Figure 10 Boxplot of the average approach speed of the different

algorithms across 500 catch up episode.

Figure 11 Boxplot of the average approach speed of the different
algorithms across 500 Spawn ahead episodes

Figure 12 Boxplot of the average approach speed of the different

algorithms across 500 Spawn ahead episodes

Figure 13 Boxplot of the average approach speed of the different

algorithms across 500 full trajectory episodes.

