
RL Methodology for consistent, explainable, and generalizable drone control 

² 

 

 1 ©2024 MBDA France, Conference on Artificial Intelligence for Defense 
 

Methodology for explainable, consistent, and 

generalizable Reinforcement Learning drone control 

  
 

Robinson Denève 

NEODE SYSTEMS 

Paris, France 

robinson.deneve@ neode-systems.com 

Paul Chaudron 

MBDA 

Paris, France 

paul.chaudron@mbda-systems.com 

Axel Puig 

NEODE SYSTEMS 

Paris, France 

axel.puig@neode-systems.com 

 

Alexandre Kotenkoff 

MBDA 

Paris, France 

alexandre.kotenkoff@mbda-systems.com 

Mathias Formoso 

MBDA 

Paris, France 

mathias.formoso@mbda-systems.com 

 

Abstract — Future aircraft systems must adapt to the 

unknowns of their environment. During a mission, a drone 

swarm must adapt its flight formation. Each drone must reach 

its set position as fast as possible while keeping his front sensor 

in the same direction as the swarm. Moreover, the computation 

must be done on board and is called at a high frequency. The 

control algorithm of the drone must ensure complete reliability 

of the aircraft system.  

We developed a Deep Reinforcement Learning based control 

algorithm that outperforms baseline algorithms. Using neural 

networks in critical systems has many flaws that we were able to 

overcome thanks to a precise methodology: 

 Explainability: addressed through global and local 

analyses. The use of the discretized neural network 

allows a drone operator to validate the decision-

making process. The drone operator does not need to 

be an AI expert.  

 Consistency: addressed with a supervisory algorithm. 

It ensures convergence to the set position while using 

the trained Neural Network only when it leads to 

better performances. It uses an allocation algorithm 

and safeguards. 

 Generalization: addressed with optimal training 

scenarios. Adaptation capabilities checked by testing 

on test scenarios.  

Keywords — Deep Reinforcement Learning, Reliability, 

Explainability, Consistency, Generalization, Swarm, UAV, 

Control, Critical System 

I. INTRODUCTION 

Reinforcement Learning (RL) is a machine learning 
method that helps an agent optimize its actions within a given 
environment to maximize its cumulative reward. The agent 
learns through trials and errors by interacting with its 
environment. RL has gained considerable interest in the early 
21st century, especially in automation [1]. More recently, deep 
neural networks have been employed to address complex 
nonlinear challenges, such as excelling at Atari games [2] and 
mastering the board game of Go [3]. 

Deep Reinforcement Learning (DRL) is a subfield of 
Reinforcement Learning (RL) that combines the principles of 
RL with deep neural networks. In traditional RL, the agent's 
policy, which maps observations to actions, is typically 
represented using tabular methods or simple function 
approximators. DRL allows the agent to learn more complex 
and abstract representations of its environment, enabling it to 
tackle intricate problems and high dimensional continuous 
spaces. For instance, DRL has been used in [4] for assets 
swarm coordination for collaborative combat and has shown 
promising results. Control of drone fleets is a challenging task 
that can greatly benefit from the power of DRL technology. 

However, using deep neural networks comes with 
drawbacks, primarily due to their intricate and nonlinear 
opaque architectures [5, 6]. Additionally, the Reinforcement 
Learning training process brings distinct challenges. 

Explainability: The decision-making logic of a neural 
network is inherently difficult to interpret. Although some 
research suggests methods for analysis—like examining 
neuron activation or the relevance of individual features, and 
conducting semantic assessments of Deep Neural Networks 
(DNN) [6]—these approaches are labor-intensive and require 
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deep expertise in Deep Learning. Additionally, it is possible 
to perform both global and local analyses to dissect a neural 
network's decision-making process. Employing a surrogate 
model with a simpler architecture can also provide valuable 
insights, facilitating easier analysis and explanation of the 
neural network's behavior [7]. 

Consistency: The inconsistency of deep neural networks 
is a notable concern; minor input variations can lead to 
significant errors [8]. This vulnerability extends to networks 
trained via reinforcement learning for tasks requiring 
continuous control, pertinent to our study [10]. To mitigate 
this issue, methods such as data augmentation and introducing 
perturbations during training are commonly employed. 
Additionally, using adversarial networks that deliberately 
disrupt inputs and stability training techniques can further 
enhance the robustness of these systems [9]. As input 
disturbance are likely in real world applications, raw Deep 
Neural Networks cannot be used in critical systems.  

Generalization: The ability of neural networks trained 
with Reinforcement Learning algorithms to adapt to new 
environments is limited. Introducing a test environment can 
help evaluate a network's generalization abilities [11]. 
Methods like data augmentation and L2 regularization, 
decrease overfitting but do not assure comprehensive enough 
generalization [12, 13]. More sophisticated strategies, such as 
Meta Reinforcement Learning, increase adaptation 
capabilities but necessitate retraining [15]. 

This article proposes a methodology that enables the 
integration of Deep Reinforcement Learning (DRL) 
algorithms in critical systems while addressing those issues: 

 To the best of our knowledge, our pioneering 
approach is the first to promote the discretization of 
neural networks, although adopting more 
explainable models has been previously suggested 
[7]. This strategy not only enhances the consistency 
and explainability of the model but does so through 
a method that is straightforward to implement. 

 We define a set of training scenarios designed to 
confirm our model's ability to generalize across 
diverse and complex trajectories. 

 We introduce various methods to analyze neural 
network behavior and decision-making processes 
using local and global analysis [7]. 

 A supervisory algorithm is incorporated, using 
baseline algorithms to maximize performance while 
ensuring the drone accomplishes his objective thanks 
to an allocation algorithm and safeguards. 

 

II. FRAMEWORK AND ENVIRONMENT 

A. Description of the Use Case 

 
During operations, a swarm of drones must dynamically 

adjust its formation depending on its environment. For 
example, changes may be required due to technical 
malfunctions or if a drone needs to leave the swarm to scout 
ahead. Each drone is equipped with a front-facing sensor or 
camera. It is essential for the drone to keep his sensor aligned 
with the swarm’s overall direction in order to effectively 

anticipate obstacles and keep watching targeted areas of the 
environment.  

As soon as a drone has received the new swarm flight 
formation, it must relocate as quickly as possible to its set 
position. Also, it must face the same direction as the rest of the 
swarm, despite the drones executing complex maneuvers. All 
computational processes must be conducted onboard and are 
executed at high frequencies.  

 

Fig.1 Illustration of a possible initialization and the expected drone behavior 

As stated earlier, the drone must comply with several 
constraints: 

 Keep the same overall direction as the swarm. We 
write 𝑑𝑠𝑤𝑎𝑟𝑚  and 𝑑𝑑𝑟𝑜𝑛𝑒  the direction of each asset. 

The direction is defined by 𝑑asset =
𝑠𝑝𝑒𝑒𝑑asset

‖𝑠𝑝𝑒𝑒𝑑asset‖
.  

We must have 𝑑swarm ∙ 𝑑drone ≥ 0 

 Join the set position with a distance < 1500m and a 
speed difference < 5% 

Once it is close enough from its set position, another 
algorithm takes over. 

Absolute reliability is required in the control algorithm. 

 

B. Environment and model  

 
For this study, we used a fixed-wing UAV model that is 

limited in speed and acceleration. This work could be adapted 
to any drone model. 

In the given simulation, the position of each drone within 
the swarm is determined by two variables: 

 The central position of the swarm, which is shared 
among all drones. 

 The specific position of the drone within the swarm, 
relative to the swarm's center. 

For the current study, we consider the horizontal 
movement of drones, disregarding vertical speed control. We 
treat the management of altitude and horizontal speed as 
separate problems, as altitude control is relatively 
straightforward and does not necessitate complex algorithms. 
Furthermore, we employ the third dimension and flocking 
algorithms to prevent collisions between drones by organizing 
them in tiers [14]. 

 Thus, our primary focus lies in controlling the horizontal 
speed of the drones. 
  

C. Reinforcement Learning for UAV control 
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We developed a drone swarm control system using a Deep 
Reinforcement Learning. The RL problem is defined as a 
Partially Observable Markov Decision Process (POMDP). A 
POMDP consists of: a set of possible states S, a set of actions 
A, the probability of transitioning from one state to another P, 
a reward function R and a set of observations O, which equals 
to S if the process is fully observable.  

At each time step t, the agent receives an observation  𝑜𝑡  ∈
𝑂 from the environment, which is based on the current state 
𝑠𝑡  ∈ 𝑆. The agent then chooses an action  𝑎𝑡  ∈ 𝐴 based on its 
policy π, which maps observations to a probability distribution 
over actions. The environment then applies the action and the 
current state to generate the next state 𝑠𝑡+1  and a reward 
𝑟𝑡~𝑅(𝑠𝑡 , 𝑎𝑡) from the reward function. 

 The goal of the agent is to find a policy that maximizes its 
sum of expected discounted rewards over time:  

𝜋 = argmax
𝜋

𝐽(𝜋) 

𝐽(𝜋) = 𝔼𝜋 [∑ 𝛾𝑡𝑟𝑡(𝑠𝑡 , 𝑎𝑡)
∞

𝑡=0
] 

where 𝛾 𝜖 [0, 1] denotes the discount factor. 

1) Initialisation of training episodes  

 
During the training process, the environment is initialised 

with random initial conditions : 

 Drone position: the drone spawns randomly around 
the swarm's center. 

 Drone heading: The initial heading of the drone is 
random. 

 Set position: The drone has to reach a random set 
position within the swarm. 

 Swarm trajectory: The swarm may follow either a 
random turn with a random radius or move in a 
straight line with a slight curve. 

 
Fig. 2 - Illustration of random training initializations 

 

2) Episode termination  
 

 During the training process, we have to decide when an 
episode ends. Gymnasium library introduced two variables to 
check if an episode is finished: truncated and terminated [16]. 
Truncation allows RL algorithm to manage episode time 
limits when the agent does not have access to a time-linked 
observation. 

 Our approach involves considering an episode as 
terminated when the UAV reaches its set position. 
Conversely, an episode is considered truncated when the time 
limit is reached or if the drone gets too far from the set 
position. 

 

3) Observation and action space 
 

The observation vector consists of the normalized relative 
position, distance of the set position and the heading of the 
swarm, all bounded between -1 and 1. The distance value 
undergoes normalization with an increasing bijection from 
[0, ∞] to [0,1], preserving all essential information. 

The action encompasses the heading and speed magnitude 
of the drone. We use the following functions: 

 

𝑓preprocess: ℝ2 × ℝ → [−1,1]5 

𝑁𝑁: [−1,1]5 → [−1,1]2 
 

Consequently, the action is determined by: 

action(observation) = 𝑁𝑁 (𝑓preprocess(observation)) Eq.1 

D. Reward system 

 
RL algorithm try to optimise an actor neural network in 

order to maximise a reward function. This function shall score 
an action based on its expected utility in achieving a specific 
goal, thus guiding the actor towards the most effective 
behaviours. 

We design a simple reward function based on two 
elements to evaluate the drone performance: 

 A direction reward: whenever the model doesn't 
follow the same direction as the swarm it gets a huge 
penalty. 

 Distance reward: at each time step, the agent receives 
a reward. The closer the drone gets from its set points, 
the greater the reward is. 

 

E. Reinforcement training algorithm 

 
In our study, we employed the Gymnasium environment 

and Stable Baselines3 Python library for reinforcement 
learning. We opted for Proximal Policy Optimization (PPO) 
and Soft Actor-Critic (SAC) [17] algorithms due to their 
current state-of-the-art status in the field. Although PPO 
demonstrated faster training times, it did not achieve the same 
level of performance after extended hours of training. 

 

III. RELIABLE REINFORCEMENT LEARNING 

METHODOLOGY. 

We trained a reinforcement learning (RL) model using Soft 

Actor-Critic (SAC) for two million steps on an eight-CPU 

workstation. Optimal performance was achieved after one 

million steps and 4.5 hours. As stated in the introduction, 

using reinforcement learning brings some drawbacks: 

 

 Consistency: The RL model may have an erratic 

behavior in response to certain observations. 
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 Generalization: RL algorithms often underperform 

in scenarios that differ from the training 

environment. 

 Explainability: The actions of the RL model may 

not be interpretable enough to establish the trust of 

drone operators. The model needs to be acceptable 

for them.  

 

These issues render RL impractical for critical systems, 

where unpredictability causes significant risks for the system. 

We propose a certification protocol that performs several 

analyses to address these concerns. 

 

A. Global Analysis, comparison with other algorithms 

 
We evaluated the performance of our trained 

reinforcement learning algorithm against more traditional 
baseline algorithms on specific scenarios. These scenarios 
were carefully selected to mimic the conditions the missile 
pack is likely to encounter in the intended use case. The 
primary objective of this comparison is to gain a global 
understanding of the advantages brought about by employing 
RL algorithms.  

 Pursuit Algorithm (PURSUIT): The classical 
pursuit algorithm directs an asset to intercept a 
moving target by aiming at its current position. It has 
been modified with a predictive component that aims 
at a point slightly ahead of the target's location based 
on its velocity. This modification enhances stability. 
Additionally, the algorithm is designed to accelerate 
when it falls behind the set position [18, 19]. 

 

Fig. 3 Illustration of the PURSUIT Algorithm functioning 

 Proportional controller (PROPORTIONAL): 
The proportional control algorithm calculates the 
required  set speed of the drone using the following 
equation: 

Set Speed = Swarm Speed + Correction Speed 

With Correction Speed = 𝛾Position Target 

Position Targeted is the relative position of the set 
position in the drone reference frame and 𝛾  is a 
positive constant such that 𝛾 ≪ 1.  

Viewed from the swarm's perspective, the drone's 
velocity relative to its target is defined as 
𝛾 Position Targeted. The drone approaches its set 
position by effectively reducing the relative distance. 

The drone's direction closely matches that of the 
swarm, so it complies with the direction constraint.  

 

Fig. 4 Illustration of the PROP Algorithm functioning 

 

1) Benchmark scenarios  

 

In order to have a comprehensive understanding of the 

upsides and downsides of the reinforcement learning agent. 

We tested our model on 500 test episodes. Those episodes are 

variation of the training episodes previously described. When 

evaluating the models, we considered two key criteria: 

 Approach speed: This metric represents the 

average velocity at which the drone approaches its 

set position, as measured in the swarm's reference 

frame, during an entire episode. 

 Compliance with the direction constraint: This 

criteria ensures the drone keeps its heading aligned 

with the one of the swarm. 

 

a) Catch Up Scenario. 

 

We assessed the algorithms' capabilities in a scenario 

where the drone's initial position is situated behind the 

swarm's center. The episode finishes when the drone reaches 

a distance of x meters from the swarm. The drone has to catch 

up the swarm. 

In our experiments, both classical algorithms 

demonstrated superior performance compared to the 

reinforcement learning model, despite all algorithms 

complying with the direction constraint. Among the classical 

algorithms, the pursuit algorithm showed a slightly better 

approach speed than the proportional controller. 

 

 RL PURSUIT PROPORTIONAL 

Average 

approach 

speed 

(m/s) 

54 57 56 

 

b) Close up Scenario  

 

One other scenario was implemented and tested. The 

drone's initial position was randomly placed between 0 and 

1500 meters away from the swarm. The episode concluded 

when the drone reached a distance of 5 meters from the 

swarm. 
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Once again, both classical algorithms (PURSUIT and 

PROPORTIONAL) perform better than RL. Indeed, both of 

them were able to join the set point with a precision of 5m 

meters whereas RL model was only able to oscillate around 

the set points with a range of 50 meters. 

PROPORTIONAL performed slightly better and was 

able to reach the set point with a precision of 2 meters and it 

was faster than the PURSUIT.  

 

c) Ahead spawn scenario  

 

Eventually, we tested every algorithms on the ahead 

spawn scenario. The drone spawns ahead of its set position. 

It ends once it is 1500 meters away from its set position. 

Our results revealed that RL outperformed both 

algorithms by executing innovative and complex maneuvers. 

PURSUIT failed to maintain the directional constraint, while 

PROP managed only to decelerate while maintaining the 

same heading as the swarm. In contrast, RL performed 

zigzags allowing it to reach its set position faster as shown in 

Fig. 5.  

The model learned to perform a zigzag maneuver to travel 

a longer distance to let the swarm catch it up. 

 

 
Fig. 5 - Trajectory of the trained RL model and of PROPORTIONAL. 

 

 

 RL PURSUIT PROPORTIONAL 

Comments 
Zigzag 

maneuver 

Unable to 

respect 

the 

direction 

constraint 

Slow maneuver 

Average 

approach 

speed (m/s) 
117 × 68 

 

 

2) Conclusion  

 

A comprehensive analysis of the RL algorithm's behaviour 

in the aforementioned scenarios provides valuable insights 

into its strengths and limitations. Given the complexities and 

constraints associated with RL, it is crucial to restrict its 

application to situations where its advantages are the most 

significant. 

We propose implementing a supervisory algorithm 
(SUPERVISED RL) that uses the optimal algorithm to 
employ based on the drone position relative to its set position. 
Using the results of the global analysis, we select the most 
appropriate algorithm to ensure the best possible performance 
depending on the drone position.  

 The different algorithms are used according to the drone’s 
relative position, following the allocation pattern presented in 
Fig. 6. 

 

Fig. 6 - Allocation of each algorithm made by the SUPERVISED RL 

algorithm depending on the drone relative position. 

B. Local Analysis 

 
To ensure the reliability of our reinforcement learning 

model, it is essential to analyze what precisely it is doing and 
ensure that there is not any discontinuity or aberration that the 
global analyses would have missed.  

We analyzed the behavior of the RL on high-level 
scenarios. In particular, we know that a zigzag maneuver is 
carried out to optimize the catch-up time. Yet we do not know 
exactly how this maneuver is performed and what specific 
actions are chosen by the neural network. Moreover, his 
behavior must be validated by a drone pilot/operator to ensure 
that the actions are consistent and not risk failing in real life 
environment. Indeed, not all the technical constraints were 
taken into account during the development of the simulation 
and we need to make sure that there are no backdoor in the 
neural networks. Finally, we must ensure that there are no 
aberrations in the decision-making process of the neural 
network.  

We are going to analyze the Neural Networks outputs from 
a set of observations. Inputs of the Neural Network are from 
ℝ3: relative position of the set point (ℝ2) and its heading (ℝ). 
As we cannot analyses every value of this continuous space, 
we are going to discretize it. 

 We consider the three-dimensional set [−𝑋max, 𝑋max] ×
[−𝑌max, 𝑌max] × [−𝜋, 𝜋] discretized into a grid by a constant 
vector Δstep = (Δ𝑥, Δ𝑦, Δ𝜃). 

As the output of the Neural Network is only 2 scalars, 
drone operators have only two values to analyze. 

1) Visualisation of the NN outputs 

 
We developed a custom visualization tool for analyzing 

the neural network's decision-making process. 

For each discretized heading, we generated a chart depicting 
the network's decision based on the drone's relative position 
to its set points. The drone is oriented with the chosen 
discretized heading. In cell [0, 0], we present the decision 
made when the drone is on its set points. In cell [0, 1000], we 
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illustrate the decision made when the drone is 1000 meters 
ahead of its set point. 

a) Speed Norm Analysis 

 

We used a heat map (Fig. 7) to visualize the speed 

magnitude ordered. Darker cells indicate slower drone 

speeds. Our analysis revealed that when the drone is ahead of 

the swarm position, it predominantly uses the slowest speed 

available. In contrast, when the drone is behind its set 

position, it prioritizes the highest speed to catch up. The 

chosen speed when the drone is on its side is more intricate 

and depends on the drone's orientation. These observed 

behaviors are consistent with the drone effectively reaching 

its set position. Observations are symmetrical, yet actions are 

expected to be symmetrical; the asymmetry in the decision 

process therefore reveals an inconsistency when the drone 

operates beyond a given range. 

 

 
Fig. 7 Heat map of the chosen speed when the drone is going in the same 

direction as the swarm. [0,0] is the set position. 

b) Heading Analysis 

 

We used a 2D field of arrows to visualize the heading 

chosen by the Neural Network. In those chart, the set point is 

going straight from left to right. The drone's orientation is 

determined by the chosen discretized heading, indicated by 

the grey arrow. The relative heading chosen by the Neural 

Network is also denoted by an arrow.  

This visualization enabled us to approve the discretized 

neural network's behavior, as we did not detect any 

discontinuities. However, we identified inconsistencies 

outside the network's domain of training, as shown in Figure 

8. Specifically, when 𝑦 exceeds 20km, the network chooses 

to maintain an almost straight course rather than moving 

closer to its set position. 

  

Fig. 8. Arrow field of the chosen heading when the drone is going in the same 

direction as the swarm. [0,0] is the set position. The red rectangle highlights 

an area where the Neural Network doesn’t choose the optimal heading. 

When 𝑦 > 20 000 it chooses to go straight (green arrow) instead of getting 

closer to the set position (blue arrow) 

c)   Conclusion 

 

Thanks to those two interactive charts, we were able to 

have a deep understanding of the model outputs. It 

highlighted the fact that the Neural Network is consistent but 

it has one flaw. The Neural Network is unable to generalize 

when out of a given bound. To address this issue, we updated 

the allocation map of SUPERVISED RL. When out of bound, 

the proportional controller is going to overtake the control of 

the drone. Otherwise, the Neural Network was validated by a 

drone operator when it operates within the specified range. 

 

 
Fig. 8 Updated SUPERVISED RL algorithm's allocation given the RL flaws. 

 

d) Neural Network discretization 

 

Even though we have conducted an in depth analysis of 

the Neural Network on a discrete space. We are unable yet to 

confirm that there no aberration or discontinuities when using 

the Neural Network on a continuous space of observation. 

Indeed, the step Δstep used to discretize the observation is 

large in order to limit the number of point to analyze 

manually. To solve this issue, we are going to use a grid 

instead of the raw neural network function. 

 

We are considering the 3 dimension grid Grid𝑁𝑁  of shape 
(𝑁1, 𝑁2, 𝑁3) such that  

 

Grid𝑁𝑁[𝑖, 𝑗, 𝑘] = 𝑁𝑁 (𝑓𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠(observation𝑖,𝑗,𝑘)) 

 

With observation𝑖,𝑗,𝑘 = (𝑖 × Δ𝑥, 𝑗 × Δ𝑦, 𝑘 × Δ𝜃) 

 

We won’t use the formula Eq.1 to calculate an action given 

an observation . Instead, we will use Grid𝑁𝑁  with the 

following formula:  

 

For a given  observation  vector, we consider 

observation𝑖,𝑗,𝑘
̂  which represents its rounded value by 

Δstep . Each element is rounded according to the 

corresponding value in the Δstep  vector. 𝑖, 𝑗, 𝑘 are the 

quotients obtained by dividing each value of the observation 

vector by Δstep. 

 

We will consider:  

actiondiscrete(observation) = Grid𝑁𝑁[𝑖, 𝑗, 𝑘] 

= action(observation𝑖,𝑗,𝑘
̂ ) 
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e) Discretized model performances 

 

We tested the discretized reinforcement learning model 

(DISCRETE RL) performances on the Spawn Ahead 

Scenario defined earlier to assess any potential loss in 

performance compared to the original continuous Neural 

Network (CONT. RL). 

 

DISCRETE RL is able performs better than the raw 

neural network. It respects the direction constraint and is 

faster to meet its set position. This improvement can be 

attributed to the discretization of the observation as the drone 

takes the same decision across multiple time steps making it 

more consistent.  
 

 CONT. RL 
DISCRETE 

RL 

Average 

approach 

speed 

(m/s) 

117 120 

 

C. Ensuring convergence with safeguards 

 

We propose another method to ensure that our model is 

always able to meet his set position while benefiting from 

the RL faster convergence speed. 

If the input dimension of the observation is too large, a 

manual local analysis would be too time consuming. 

Moreover, we want to add extra safety features to our 

algorithmic chain as we are working with critical system. 

The system reliability cannot rely only on the drone 

operator analysis as human mistakes are possible.  

To do so, we are going to implement safeguards to our 

algorithmic chain to ensure convergence on the set position 

regardless of the reinforcement learning decisions. 

 

a) Safeguards 

 

We added two safeguards to guarantee convergence to 

the set position while complying with the direction constraint:  

 

 Direction Safeguard: If the drone is close from 

breaking the direction constraint, the proportional 

controller temporarily override the RL model until it 

is more aligned with the swarm’s direction. 

 Speed Safeguard: the drone’s speed is set to 

minimum when it is in front of its set position and to 

maximum when it is lagging behind.   

 

We also changed the allocation pattern of SUPERVISED 

RL. The bottom of the zone originally allocated to RL is 

switch to PROPORTIONAL in order to form a cone. This 

cone shape forces the drone to meet the set position when it 

is on its sides.  

Moreover, SUPERVISED RL is also going to use the 

Safeguards when using RL algorithm.  

 

 

 
Fig. 9 Updated SUPERVISED RL algorithm's allocation to ensure 

convergence on the set position  

 

b) Results 

 

Safeguards allows the drone to regain its set position no 

matter which decision is taken. We tested an algorithm 

choosing random heading over 2000 iterations of the Spawn 

ahead scenario. It met his set positions on 100% of the 

episodes thanks to the Safeguards algorithm. It was still 

slower than the other algorithms.  

During the worst case of those 2000 iterations, Random 

+ Safeguards took 526 seconds to meet his set position which 

is comparable with the PROPORTIONAL algorithm 

performance.  

We trained a Reinforcement Learning model with 

the safeguards. The training was 10% faster as the model 

dictates only the heading.  

 

We had the following performances across 500 

episodes of the Spawn ahead scenario. 

 

 

 

 CONT.  RL PROPORTIONAL Discrete RL 
Discrete RL + 

Safeguards 

Random + 

Safeguards 

Average 

approach 

speed (m/s) 

117 68 120 107 61 

 
DISCRETE 

RL 

Random + 

Safeguards 

DISCRETE 

RL + 

Safeguards 

PROPORTIONAL 

Worst 

case 

time to 

meet 

the set 

position 

(s) 

186 526 189 868 
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The “Discrete RL + Safeguards” algorithm is unable 

to be as fast as the other RL models due to non-optimal speed 

constraints, particularly when the drone is on the side of its 

set position. However, it ensures that the drone will reach it. 

Moreover, it outperforms PROPOTIONAL, all while 

complying with the direction constraint.  

Thanks to those precise analyses, the SUPERVISED 

RL algorithm uses the allocation pattern described in Fig. 10. 

It uses Discrete RL to have an explainable algorithm. It also 

uses Safeguards to ensure task completion and compliance 

with the direction constraint.  

 

D. Ensuring the generalisation capabilities of RL 

 

In real life environment, drones perform complex and 

unpredictable maneuvers. We couldn’t train our model on 

every possible trajectory. Yet, our model was able to 

generalize and meet a swarm in carrying out any trajectory as 

we trained on the correct subset of scenario.  

 

A full trajectory is a complex movement. But we can 

break it down into simpler maneuvers and train our 

Reinforcement Learning model on those simpler maneuvers. 

 

As a trajectory is made out of straight lines and turns, we 

trained our model on scenarios where the swarms performed 

a straight line with a slight curb or a turn with a random turn 

radius. To assess the generalization capabilities of the 

reinforcement learning model, we trained and tested it across 

two distinct environments. The model was trained on 

trajectory’s segments and tested on full trajectories. 

 

We compared the proportional controller against the 

SUPERVISED RL model with all the improvement that have 

been implemented: 

 Discrete RL: to ensure that we an explainable 

Neural Network. 

 Safeguards so that the drone comply with the 

constraints. 

 Allocation patterns: RL is only used when it brings 

better performances.  

Those two algorithms are able to respect the direction 

constraints while ensuring the drone to meet his set position. 

They are also explainable thanks to in-depth analyses. We 

tested the two different algorithms on 500 episodes. The 

initialization was the same as the training scenario but the 

swarm performs a much more complex trajectory. It performs 

several random turns instead of just one. We ended the 

simulation once the drone is 1500 meters away from his set 

position as the SUPERVISED RL will also use the 

proportional controller at this point.  

 

We found out the SUPERVISED RL algorithm is faster 

at joining the set position. Using the Reinforcement Learning 

only where it brings better performances led to high 

performance algorithm that complies with the use case 

constraints.  

 

 

 

 

 PROPORTIONAL SUPERVISED RL 

Average 

approach 

speed 

(m/s) 

77 85 

 

IV. CONCLUSION 

 Our approach enhances the reliability of decision 
algorithm based on reinforcement learning and AI. It 
successfully addresses the major challenges associated with 
reinforcement learning: generalization, consistency, and 
explainability. This enables us to leverage the superior 
performance of reinforcement learning in critical systems. 
However, our discretization methodology may not be as 
effective for tasks involving high-dimensional observation 
inputs as the observation space might be too large to conduct 
a local analysis. Moreover, integrating a supervision 
algorithm and safeguards to ensure task completion is not 
straightforward across all use cases. 
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V. ANNEX 

 
Figure 10 Boxplot of the average approach speed of the different 

algorithms across 500 catch up episode.

 

Figure 11 Boxplot of the average approach speed of the different 
algorithms across 500 Spawn ahead episodes

 

Figure 12 Boxplot of the average approach speed of the different 

algorithms across 500 Spawn ahead episodes 

 

Figure 13 Boxplot of the average approach speed of the different 

algorithms across 500 full trajectory episodes. 


