
Machine Learning Toolbox for Anomaly Detection
in Low-Flying Aircraft Surveillance

1st Melvyn Pirolley
Université de Franche-Comté

FEMTO-ST Institute, CNRS
Belfort, France

melvyn.pirolley@univ-fcomte.fr

2nd Raphaël Couturier
Université de Franche-Comté

FEMTO-ST Institute, CNRS
Belfort, France

raphael.couturier@univ-fcomte.fr

3rd Aymeric Cretin
Smartesting

Besançon, France
aymeric.cretin@smartesting.com

4th Antoine Chevrot
Smartesting

Besançon, France
antoine.chevrot@smartesting.com

5th Thomas Dubot
Universite de Toulouse

ONERA, DTIS
Toulouse, France

thomas.dubot@onera.fr

Abstract—The increasing density of low-flying aircraft and
the development of new technologies for light aviation bring
new challenges for air controllers. However, an important part
of today’s air traffic control relies on the insecure Automatic
Dependent Surveillance-Broadcast (ADS-B) protocol. It cannot
be trusted because anyone can read, emit, or modify ADS-B
messages with a little equipment. This weakness can give rise to
various attacks and a new security system should be developed
for ADS-B to avoid a complete stop of the traffic.

This work will present two attack scenarios and provide
multiple methods based on machine learning to face those attacks
automatically. The two scenarios cover spoofing attacks and
ghost detection. This article also presents a few additional tools,
developed in the context of our research project, for anomaly
detection and ADS-B visualization. All those algorithms have the
objective of constituting a complete toolbox for low-altitude ADS-
B anomaly detection. Overall, all attacks can be detected with
an accuracy of over 96%.

Index Terms—Cybersecurity, Machine learning, ADS-B, low-
altitude air traffic

I. INTRODUCTION

With the regular arrival of new low-altitude technologies,
the density of low-altitude traffic increases. More and more
projects are attempting to develop new lightweight aerial
vehicles for transporting people or goods. In recent years a
lot has been written about parcel delivery by drones 1. More
recently, during the Paris 2024 Olympics Games, the city
has expressed its ambition to equip itself with an electric
vertical take-off and landing aircraft (eVTOL) to provide
rapid transport between a few points of interest. All these
examples testify to the enthusiasm for the development of
light transport systems. It will not be long before air traffic
control systems are heavily impacted. These solutions are
lighter than conventional air traffic, and will probably rely on

protocols such as ADS-B (Automatic Dependent Surveillance-
Broadcast) due to the very low altitude of these aircraft.

However, as those protocols are completely open, they are
highly likely to be attacked [1]. These light transportation sys-
tems could be used to lead attacks with potentially dangerous
consequences for the population. For example, eVTOL could
be targeted by saturation attacks. As they act like taxis, they
always follow the same route, and saturation of an eVTOL
route by ghost aircraft would lead to the impossibility of
ensuring air traffic control in the area, which could result in
the suspension of eVTOL service.

That is why this study focuses on securing low-altitude air
traffic control. Numerous attacks are possible, such as injecting
phantom aircraft to flood the network, distorting trajectories,
emitting false alarm signals, making an aircraft disappear,
impersonating another aircraft, etc. The aim is therefore to
provide a complete architecture based on deep learning and
other technologies for detecting and fixing anomalies in low-
altitude ADS-B data. This work is part of a research project,
founded by the DGA (French defense procurement agency),
named DApIA. It is the culmination of earlier work carried
out as part of the GeLeaD (see Acknowledgements on the
bottom part) [2, 3]. These three publications deal with ADS-
B anomaly detection, but their main limitation is that they
concentrate on commercial traffic, whereas the present study
focuses on low-level traffic.

This article begins by presenting some other works on
ADS-B anomaly detection. It then details the dataset’s format
used for training and evaluating our models. It continues
with an explanation of the methods developed to cope with
spoofing and flooding attacks. The next section presents the
results obtained by our models. It ends with a conclusion and

This work was supported by the DGA (French defense procurement agency) in the context of the DApIA project (project number ANR-22-ASM2-0001)
related to the ANR ASTRID Maturation program (specific support for follow-up research works of projects that have received a grant from the French Ministry
of Armed Forces - GeLeaD project number ANR-18-ASTR-0011). It was also partially supported by the EIPHI Graduate School (contract ANR-17-EURE-
0002). Computations have been performed on the supercomputer facilities of the “Mésocentre de Franche-Comté”.

1https://www.bbc.com/news/business-67132527



prospects for improvement.

II. RELATED WORKS

In the literature, some other works have presented models
dealing with anomaly detection in ADS-B time series.

In [4], the authors present an unsupervised LSTM Encoder-
Decoder to detect abnormal ADS-B messages with less than
4.5% of false positive detection. The model works by encoding
windows of ADS-B messages in a vector and then reconstruct-
ing the trace with a decoder model. The reconstructed trace
is compared with the original trace to assess model errors.
Anomaly detection is based on the fact that an abnormal trace
would be incorrectly reconstructed and amplified, producing a
peak error. This reconstruction error is due to the fact that the
model has only been trained on normal trajectories and would
therefore not react correctly to modified trajectories, since it
has never seen any during training. The implementation of this
type of encoder-decoder model is part of an idea that we have
not yet experimented with. A similar model could be useful
for confirming our model’s prediction for saturation attacks.
This model also has similarities with [5].

In [6], the author presents another anomaly detection
method. In this situation, the next ADS-B message is predicted
based on a history of n messages. When the next message is
received, the algorithms compare it with the model’s predic-
tion. When the difference between the prediction and the actual
message does not exceed a certain threshold, the message is
normal. This study is relevant to our work because it is very
similar to our model for saturation attacks. The only difference
is that it predicts all ADS-B features, whereas our model only
predicts latitude and longitude for saturation detection. The
advantage of predicting all features is that their model will be
able to detect a wide variety of attacks. To achieve that, they
have defined different error thresholds for each ADS-B feature
to adapt to each anomaly. On the other hand, the advantage
of our model is that it specializes in fixing saturation attacks.

III. DATASET

The dataset used in this study was mainly built up from
the OpenSky network history database [7]. It contains several
years of ADS-B message history worldwide, making it an
inexhaustible source of ADS-B data for our algorithms. In
addition, other data sources were used, such as OpenStreetMap
tiles and an airport dataset to obtain airport coordinates. [8].

From this database, flight data was collected around
Toulouse (from 0.72561 latitudes and 43.11581 longitudes to
2.16344 latitudes and 44.07449 longitudes) at altitudes of less
than 10,000 feet, to retain only low-level traffic. Messages
were collected between 2022 and 2023. Finally, messages
are grouped by registry code and split between landing and
take-off to form flights. Each flight is saved in one CSV file
containing the following rows:

• timestamp: Date of the message
• icao24: Transponder identifier

• latitude: Coordinates
• longitude: Coordinates
• groundspeed: Horizontal speed
• track: Orientation (0° is north)
• vertical rate: Ascensional speed
• callsign: Registry code of the aircraft
• onground: True if on ground
• alert: True if in alarm state
• spi: Special position indicator
• squawk: A status code
• altitude: Barometric altitude
• geoaltitude: GNSS altitude
Low-quality flights were removed from the dataset based

on criteria such as duration, amount of missing values, total
flight length ... Each flight lasts a minimum of 15 minutes. As
the aircraft transmits ADS-B every second, flights generally
contain one message per second, but due to coverage problems,
some messages may be missing. The final data set contains
10,158 flights for training (12% of the training set is used for
testing) and 819 flights for evaluation.

IV. METHOD

Anomaly detection in low-level air traffic presents many
challenges compared with anomaly detection in commercial
aviation. The main difference lies in the great variety of aircraft
and their respective trajectories. Therefore, to address this
variety, multiple attack scenarios were established, and related
anomaly detection models were developed.

A. Scenario A: Spoofing attacks

Our first scenario takes place in the context of the 2023
Rugby World Cup in Toulouse or a similarly large event.
Toulouse has very dense low-altitude traffic, with a lot of
SAMU (French emergency) helicopters, two heliports, low-
altitude flight clubs, and military areas. In this traffic, an
attacker could use a drone to target the stadium. In flight,
the drone would emit false ADS-B messages, to impersonate
a SAMU helicopter and make air surveillance believe it to be
friendly. As a result, air traffic could be severely disrupted,
preventing aircraft from taking off for safety reasons.

To face spoofing attacks, a deep Convolutional Neural
Network (CNN) was developed. The model is a classifier that
determines the aircraft type based on its trajectory only. Then,
by comparing the prediction of the model and the registry
code of the aircraft, it is possible to check if the aircraft is not
spoofing the identity of another kind of aircraft. For example,
if a plane uses the identity of a helicopter, it will be unmasked
because the model will label its trajectory as a plane.

The model architecture is described in Figure 1. To make
predictions, it combines four different inputs: an ADS-B
window, a take-off context, a geographic context, and the
distance between the aircraft and near airports. As output, the
model gives three probabilities, one for each of the defined
classes:



(128, 11)
(64, 32) (32, 64)

(16, 128)
Input layer
Convolution
MaxPooling

Flatten
Dense

3

2048

(128, 22)

Stem (Conv {kernel:9, stride:2}) 
Concatenate

ADS-B
Messages

Takeoff
context

(128, 128, 3) (64, 64, 16) (64, 64, 32):(32, 32, 32)

10270

(16, 16, 128):8192
(32, 32, 64):(16, 16, 64)

(128, 11)

Geographic
context

(x, x):(x, x) Input shape : Output shape
Conv + Conv + MaxPooling

5120

(64, 22)

(x, x)Output shape

Airport distance
30

Fig. 1: CNN model architecture for Spoofing detection

• Commercial aircraft: at take-off and landing, when they
cross the low altitude traffic.

• Light aircraft: regroup small aircraft, used by aeronautic
clubs, tourism, transportation ...

• Helicopter: mainly SAMU helicopters, can also be police
helicopters.

The ADS-B window corresponds to the last 128 timestamps,
i.e. about 2 minutes of flight. The features used are timestamp,
latitude, longitude, altitude, geoaltitude, ground speed, track,
vertical speed, ground, alert, and spi. The trajectory latitude
and longitude are transformed to relative coordinates on (0°,
0°). This normalization greatly helps the model as it will get
all trajectories in the same format. The timestamp field is set
at 0 for the current message and with negative values for the
historical messages. Finally, all features are scaled between 0
and 1 using MinMaxScalers. Among the secondary data, the
takeoff context corresponds to the first 128 time steps of the
trajectory. This contextual data remains the same throughout
the flight. It helps the model to remember the shape of the
take-off so that it can continue to make good predictions in
monotonous areas such as high-altitude flights. The geographic
context is a small tile from the OpenStreetMap. It gives the
model information about the environment (city, river, forests,
...) around the aircraft. This information is very important be-
cause aircraft regularly follow some geographic structures. For
example, on take-off, SAMU helicopters follow the Garonne
River to reduce noise in the city center. Finally, the distance
from the airport helps the model to understand in which zone
the aircraft is flying. It gives a sort of absolute coordinate
location as the latitude and longitude of the aircraft are set to
relative coordinates.

B. Scenario B: Saturation attacks

Our second scenario is about detecting and fixing flooding
attacks. It involves the injection of ghost aircraft into the
system. As there are multiple ways to realize a flooding attack
this scenario is divided into two main categories: saturation
and replays.

Those two types of attacks could have a large impact on
dense air-lines. This is the case between Nice, Monaco, and
Cannes, where many private helicopters act as taxis between
these three destinations. The helicopters follow very similar
trajectories, making them easier to target. With the advent of
eVTOL technologies, these helicopters could be transformed
into eVTOLs, for economic and noise reasons. In this case,
traffic would increase drastically, making a saturation attack
even more dangerous.

This first section discusses the methodology used to address
saturation attacks. Saturation attacks refer to any flooding
attack that injects false ADS-B messages around an aircraft’s
position to disrupt its tracking. These attacks can resemble
those shown in Figure 2, and the goal is to identify ghost
signals without filtering out real aircraft.

To achieve this, messages that are not coherent with the
rest of the trajectory must be identified. A residual LSTM
model was developed (Figure 3) to predict the next position
of the aircraft based on its trajectory. Trained on normal
trajectories, this model detects anomalies when the prediction
error increases significantly.

For example, in Figure 4, the model’s predictions were
compared for a ghost diverging 30° from the original aircraft,
another diverging 10°, and the real aircraft. The results show
that the more the trajectory is modified, the farther the predic-
tions are, leading to a higher model error.



Fig. 2: Saturation exemple

(64, 10)

ADS-B
Messages

(64, 128)

+ +

(64, 128) (64, 128) (2)

Input/Output
Convolution
LSTM

+ Sum

Fig. 3: Residual LSTM architecture for Saturation detection

(a) Divergence=30°

(b) Divergence=15°

(c) Real aircraft

Fig. 4: Comparison between model predictions and truth
values

Based on this approach, it is possible to define an error
threshold that, once exceeded, triggers an anomaly. This
threshold must be fine-tuned to detect the maximum number
of anomalies possible, without too many false positives.

C. Scenario B: Replay attacks

The second type of flooding attack is replay. The main
difficulty in replaying trajectories lies in the fact that they are
real trajectories that have occurred in the past. Replay attacks
could disrupt the air traffic control of an entire airline, as an
attacker could regularly inject replays. In this case, air traffic
controllers would not be able to distinguish between real and
fake aircraft, preventing them from ensuring the safety of real
aircraft.

To detect if a flight is a replay from the past, the only
reliable possibility is to compare it with a historical database
and check if this precise flight already happened. Since a
historical database represents a vast amount of data, pair-wise
comparisons between flights would be too slow. Therefore,
research focused on developing a hash table system specif-
ically for storing trajectories. The approach was inspired by
the Shazam app, which addresses a similar task by recognizing
short extracts of time series in very large databases [9]. How-
ever, the Shazam hash method differs significantly because it
deals with audio data, whereas our focus is on trajectories.

The hash algorithm must meet certain constraints. Firstly,
the algorithms must be able to detect within a short window
of a few minutes whether the trajectory is a trade-in or not.
Indeed, it would be too late to know whether a trajectory is
a trade-in once it has been completed. So, trajectories are
split into small sub-windows of 32 timesteps. Secondly, as
the attacker may use replays from a trajectory that happened
somewhere else, our hash function should be resilient to
basic transformations such as translation, rotation, scaling, and
symmetries. To follow this constraint, every trajectory window
is converted into a fingerprint before being hashed. The
fingerprint is a series of micro right and left turns. The benefit
of this transformation is that it makes trajectories invariant to
nearly every transformation except symmetries. Additionally,
it simplifies the trajectory significantly while maintaining its
uniqueness. Finally, even though fingerprints are affected by
symmetries, they can still be managed. Mirroring a trajectory
will have the effect of inverting every right and left turn in
its fingerprint. Hence, the hash function should be defined to
generate the same hash value for opposite fingerprints. This
can be achieved by associating right turns with the value 1
and left turns with 0, allowing the computation of a number
based on the binary value of the fingerprint. This number is
then reversed using the XOR operation if its value is greater
than the median. The XOR operation ensures that opposite
fingerprints produce the same hash value.

One weakness of the first version of this algorithm was
its sensitivity to straight flights. When three points were
almost aligned, the algorithm started to confuse right and left
turns due to floating-point precision issues. To address this, a
straight label was added to the fingerprint, acting as a wildcard.
The idea is that when it is unclear whether the current message
forms a right or left turn, it is ignored. The straight label
generates a match whether compared with a right or left turn.
This behavior is achieved by generating every sub-combination



of a fingerprint by replacing wildcards with right and left and
then comparing each sub-fingerprint with the hash table.

D. Additional tools

During the realization of the project, some secondary tools
were developed to ease the development of the project or to
fix some practical problems.

1) Trajectory Separator: has been developed to separate
messages for flights having the same registry code. This can
happen when ghost messages use the same registry code of a
plane while it flight. Without a system to separate duplicated
registry code, the flight could look like Figure 5a. The screen
displays messages as if they were part of the same trajectory.

In such a situation, when several messages are received with
the same register code, the algorithm creates sub-trajectories
for each conflicting message. It aims to assign each of these
messages to a sub-trajectory, trying to keep the trajectory
as smooth and coherent as possible. To achieve this, the
algorithm predicts for each sub-trajectory the position where
the next message should be. Then it assigns the message to the
trajectory that has the nearest predicted position. As a result,
the algorithm will reconstruct trajectories as in Figure 5b.

(a) Before (b) after

Fig. 5: Before and after duplicated registry code separation

To predict the next position the algorithm applies the speed
vector of the aircraft from its position (using spherical calcula-
tion). The prediction could be more accurate with a machine-
learning model however it would be more time-consuming.

2) ADS-B visualizer: is a tool for visualizing ADS-B files
(Figure 6). Its goal is to ease the visualization of our ADS-B
flight’s content. It can be used to understand the specificity
of some attacks. It is also used to demonstrate the project by
allowing the visualization of model predictions.

It provides a large range of functionalities such as play,
pause, increasing or decreasing the time speed, going back-
ward, and jumping to a specific time. It can manage multiple

aircraft at once, and add the ability to filter aircraft by type or
name. It can display all trajectories at once, to highlight the
busiest airline. It can graphically display speed, altitude, and
other aircraft profiles.

An online version of the visualizer is available at https:
//adsb-visualizer.web.app/ and the source of the project can
be found in GitHub at: https://github.com/DApIA-Project/
ADSB-Visualizer

Fig. 6: ADS-B visualiser interface

3) A Python library for anomaly detection: The following
text should be kept in mind:

”This tool has been developed to ensure reproducibility and
simplify the use of our detection tool. It has been designed
for easy integration and consists of only one function called
”predict()”. This function takes all ADS-B messages received
in the last second as input.” The input format of ”predict()”
is a list of dictionaries, each dictionary represents one ADS-B
message and should contain the following keys: timestamp,
icao24, latitude, longitude, groundspeed, track, vertical rate,
callsign, on-ground, alert, spi, squawk, altitude, geoaltitude.
The function will output the same ADS-B messages, annotated
with the following flags:

• Spoofing: True if spoofing anomaly has been detected
• Flooding: True if the aircraft is a ghost
• Replay: True the flight has been detected as a replay
To make predictions the library stores in a buffer the

messages from the last call to be able to access the historical
data needed by the models.

Hence, it is easy to predict every source of ADS-B. The
code in figure 7 is an example of predicting an ADS-B record
saved as CSV.

The library code is available in our GitHub: https:
//github.com/DApIA-Project/Anomaly-Detection and can

https://adsb-visualizer.web.app/
https://adsb-visualizer.web.app/
https://github.com/DApIA-Project/ADSB-Visualizer
https://github.com/DApIA-Project/ADSB-Visualizer
https://github.com/DApIA-Project/Anomaly-Detection
https://github.com/DApIA-Project/Anomaly-Detection


be installed using the command: pip install
AdsbAnomalyDetector

1 from AdsbAnomalyDetector import predict
2 import pandas as pd
3

4 data = pd.read_csv("./record.csv")
5 start = data["timestamp"].iloc[0]
6 end = data["timestamp"].iloc[-1]
7

8 out_df = pd.DataFrame()
9 for t in range(start, end):

10 messages = data[data["timestamp"] == t]
11 .to_dict("records")
12

13 messages_out = predict(messages)
14 for message in messages_out:
15 out_df.loc[len(out_df)] = message
16

17 out_df.to_csv("output.csv")
18

Fig. 7: Code example to check anomalies on an ADS-B record
saved as CSV

V. RESULTS

A. Scenario A: Spoofing attacks

To verify the efficiency of the model, it was tested under real
conditions by streaming actual flight messages and checking
the model’s classification. Since the model makes predictions
on flight windows, it provides one prediction for each message.
To aggregate predictions, the most confident prediction of the
model is used to determine the aircraft type. This method
yields the following confusion matrix (Figure 8).

Fig. 8: Confusion matrix of the CNN model for Spoofing
detection

The majority of the model’s mistakes occur between light
planes and helicopters. This confusion is mainly because the
trajectory of a flight at a certain altitude can sometimes be
very linear and exhibit similar patterns between helicopters
and light planes. Given that commercial planes are heavier, it
is not surprising that the model easily recognizes them.

To compare with other models, multiple experiments were
conducted using other classical machine learning techniques.

Model MSE Accuracy (%)
Transformer 0.0373 95.6%
LSTM 0.0323 96.0%
CNN 0.0181 96.5%

TABLE I: Spoofing models comparison

Surprisingly, time series models such as LSTM and Trans-
formers perform less effectively. This may be due to the fact
that the problem is a classification task, while LSTM and
Transformers are generally more suited for regression tasks.
An ablation study of this model was conducted previously
to demonstrate the necessity of each sub-module. As shown
in Table I the best approach is to use CNN models. This
model requires approximately 45 minutes of training on an
Intel i7 CPU over 150 epochs. Other models utilize the same
architecture as the CNN, but the Take-Off and ADS-B modules
are replaced with LSTM or Transformers. The Transformers
model is inspired by [10].

B. Scenario B: Saturation attacks

Detecting the correct airplane among a mass of ghost
aircraft can be challenging under saturation. That is why our
model focuses on detecting ghosts rather than finding the right
aircraft. In an ideal situation, all the ghosts would be detected,
leaving only the correct aircraft.

To evaluate the efficiency of a model, its accuracy was
computed based on the percentage of ghosts that incur a
higher loss than the real aircraft. The metrics used depend
significantly on the difficulty of the attack and were derived
from a dataset of saturation attacks generated by ourselves.
Under actual saturation attacks, the model’s performance could
vary. Multiple models are compared in Table II.

Model MSE Distance error
(m)

Accuracy
(%)

Transformer 0.0058 22.46m 82.6%
CNN 0.0061 17.21m 89.8%
Reservoir 0.0044 13.99m 98.5%
Residual-LSTM 0.0034 13.60m 98.5%

TABLE II: Saturation models comparison

The residual LSTM architecture gives the best result with
an accuracy of 98.5

The reservoir computing model performs surprisingly well,
despite being simpler than classical neural network techniques.
It achieves the same accuracy as the LSTM, with a slightly
higher error distance. Its simple architecture allows for quick



predictions due to its short execution time. The reservoir archi-
tecture consists of 1000 units connected to a fully connected
layer of neurons as readout [11].

While the Transformer models have good generalization,
they do not outperform the LSTM or the Reservoir. The
Transformer model used here comes from [12], using the clas-
sical variant from their GitHub. Its underperformance could
be due to the short forecasting horizon, as transformers are
typically effective for long-term forecasting. Gradient boosting
algorithms were also tested but did not perform better.

C. Scenario B: Replay attacks

The hash table developed to solve replay attacks is one of
our best models. It can generally determine if a trajectory
is a replay with a one-minute flight window. Depending on
the quality of the ADS-B coverage, it can need a bit more
time to make its prediction. Thanks to the characteristics of
hash tables, false positive detections are never generated. Hash
collisions are possible, as the number of different hashes is
231 ≈ 2B. It seems to be small as common hash systems
use larger ranges like 2128 combination for MD5 however,
it provides better reactivity of detection. Furthermore, our
model’s predictions are not based solely on a single match. For
reliability reasons, the model only qualifies a flight as a replay
if several messages correspond consecutively to the same flight
in the past. So, even if it is possible to have a collision for a
message, it is impossible to have several consecutive collisions
with the same flight, and the model therefore never generates
a false-positive detection.

In terms of detection capacity, the system is very accurate.
It can determine if a trajectory is a replay even when deformed
by common matrix transformations. Providing a precise accu-
racy score is challenging as it depends on the strength of the
attack. However, with raw replay attacks, the system achieves
100% correct predictions, and on the test dataset, it correctly
detects ghosts with 98% accuracy.

Finally, the algorithm is really fast, thanks to the hash table
which has 0(1) complexity. Hence, even if the database is
really large the algorithms will be able to process a flight of
15 minutes in 134ms.

One limitation of our system is that the hash table is stored
on the computer’s RAM. As it can become very large, it would
be better to store it on the disk so as not to overflow the
computer’s RAM and to allow memory space for our neural
network algorithms. However, this change would slow down
the detection.

VI. CONCLUSION AND PERSPECTIVES

In this paper, several models for detecting anomalies in
ADS-B time series are proposed. These models can work
together to provide reliable detection of ghosts using ADS-
B reruns or ghosts with abnormal trajectories. It also includes
a tool to automatically detect whether aircraft are using the
correct registration code, and to prevent spoofing attacks. All
these models are brought together and run in real time in a
library called AdsbAnomalyDetector.

In the future, we plan to improve the variety of attacks that
could be handled by the model. For example, we could train
the models to falsify trajectories generated by interpolation,
which would be too smooth. We will also try to add redun-
dancy to confirm the model’s predictions by using additional
models such as autocoders. Finally, we will try to fine-tune
the architecture of our model and go beyond our current
accuracies.

REFERENCES

[1] Andrei Costin and Aurélien Francillon. Ghost in the
Air(Traffic): On insecurity of ADS-B protocol and prac-
tical attacks on ADS-B devices. July 2012.

[2] Ralph Karam, Michel Salomon, and Raphaël Couturier.
“A comparative study of deep learning architectures for
detection of anomalous ADS-B messages”. In: 2020
7th International Conference on Control, Decision and
Information Technologies (CoDIT). Vol. 1. IEEE. 2020,
pp. 241–246.

[3] Ralph Karam, Michel Salomon, and Raphaël Couturier.
“Supervised ADS-B Anomaly Detection Using a False
Data Generator”. In: 2022 2nd International Conference
on Computer, Control and Robotics (ICCCR). 2022,
pp. 218–223. DOI: 10 . 1109 / ICCCR54399 . 2022 .
9790149.

[4] Edan Habler and Asaf Shabtai. “Using LSTM encoder-
decoder algorithm for detecting anomalous ADS-B
messages”. In: Computers Security 78 (2018), pp. 155–
173. ISSN: 0167-4048. DOI: 10.1016/j.cose.2018.07.
004.

[5] Antoine Chevrot, Alexandre Vernotte, and Bruno Leg-
eard. “CAE: Contextual auto-encoder for multivariate
time-series anomaly detection in air transportation”. In:
Computers & Security 116 (2022), p. 102652.

[6] Yunkai Zou Jing Wang and Jianli Ding. “ADS-B spoof-
ing attack detection method based on LSTM”. In: J
Wireless Com Network 160 (2020). DOI: 10 . 1186 /
s13638-020-01756-8.

[7] OpenSky’s Historical Database. 2013. URL: https : / /
opensky-network.org/data/historical-flight-data.

[8] David Megginson. OurAirports. 2007. URL: https : / /
ourairports.com/.

[9] Avery Wang. “An Industrial Strength Audio Search
Algorithm.” In: Jan. 2003.

[10] Theodoros Ntakouris. Timeseries classification with
a Transformer model. 2021. URL: https : / / keras .
io / examples / timeseries / timeseries classification
transformer/.

[11] Nathan Trouvain, Nicolas Rougier, and Xavier Hinaut.
“Create Efficient and Complex Reservoir Computing
Architectures with ReservoirPy”. In: From Animals to
Animats 16. Cham: Springer International Publishing,
2022, pp. 91–102. DOI: 10.1007/978-3-031-16770-6 8.

[12] Haixu Wu et al. Autoformer: Decomposition Trans-
formers with Auto-Correlation for Long-Term Series
Forecasting. 2022. arXiv: 2106.13008 [cs.LG].

https://doi.org/10.1109/ICCCR54399.2022.9790149
https://doi.org/10.1109/ICCCR54399.2022.9790149
https://doi.org/10.1016/j.cose.2018.07.004
https://doi.org/10.1016/j.cose.2018.07.004
https://doi.org/10.1186/s13638-020-01756-8
https://doi.org/10.1186/s13638-020-01756-8
https://opensky-network.org/data/historical-flight-data
https://opensky-network.org/data/historical-flight-data
https://ourairports.com/
https://ourairports.com/
https://keras.io/examples/timeseries/timeseries_classification_transformer/
https://keras.io/examples/timeseries/timeseries_classification_transformer/
https://keras.io/examples/timeseries/timeseries_classification_transformer/
https://doi.org/10.1007/978-3-031-16770-6_8
https://arxiv.org/abs/2106.13008

	Introduction
	Related works
	Dataset
	Method
	Scenario A: Spoofing attacks
	Scenario B: Saturation attacks
	Scenario B: Replay attacks
	Additional tools
	Trajectory Separator
	ADS-B visualizer
	A Python library for anomaly detection


	Results
	Scenario A: Spoofing attacks
	Scenario B: Saturation attacks
	Scenario B: Replay attacks

	Conclusion and perspectives

