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Abstract—Self-supervised pretraining has proved to be a com-
petitive tool to improve downstream task performance in the
field of remote sensing. Attempts to create geospatial foundation
models based on such pretraining techniques are increasing in
numbers, and are a promising solution to exploit the vast amount
of unannotated remote sensing imagery. Due to the widespread
availability of various self-supervised techniques, either generic
or specific to remote sensing, it becomes of importance for practi-
tioners to find a way to identify the best performing pretraining
method based on the downstream task being tackled. In this
paper, we present a systematic benchmark of commonly used
self-supervised pretraining methods and provide insights into the
most appropriate approach depending on the chosen downstream
tasks. Our results indicate that Masked Auto Encoders (MAE), a
reconstruction-based method, seems to be the overall winner on
most use-cases. We also show that ImageNet remains a powerful
pretraining dataset and can produce competitive baselines, while
building a tailored pretraining dataset using high-resolution satel-
lite images can effectively improve the downstream performance
compared to such baselines. Finally, we study the computational
efficiency of pretraining methods and provide recommendations
based on the available budget.

Index Terms—deep learning, computer vision, remote sensing,
optical imagery, foundation model, self-supervised learning, land
use classification, object detection, semantic segmentation, bench-
mark

I. INTRODUCTION

The emergence of foundation models, a family of general-
purpose models for solving a wide range of computer vision
tasks, has overturned the traditional methodology of using a
dedicated model for each task. This paradigm shift allows a
common backbone to be used for any downstream task, espe-
cially classification, segmentation and detection. The training
of a foundation model usually consists of two steps: pre-
training and finetuning. The pretraining is done with the self-
supervised learning (SSL) methodology, it makes it possible
to train an encoder on a large quantity of unlabeled data using
a pretext task, in order to learn how to extract meaningful
visual features. Once complete, the finetuning step is applied
to learn the downstream task, reusing the model’s encoder
while creating a new decoder.

If the pretraining is carried out correctly, the weights of the
encoder can be reused in a variety of downstream tasks. Thus,
selecting the most adapted SSL method is crucial as it highly
impacts the generalization capabilities of the resulting model.
Furthermore, the efficiency of the method is another important

Fig. 1. Pretraining a ViT-Large with MAE on our internal datasets (PRL-2.5M
and PRL-363k) improves performance on most downstream tasks compared
to publicly available weights.

factor to be considered as pretraining is the main source of
computational costs, especially when using large datasets.

Faced with all these technological opportunities, the ques-
tion logically arises as to which is the optimal pretraining
solution to use within the context of remote sensing.

In this article, we provide details on the efficiency of some
SSL methods for vision tasks. Specifically, we study the effec-
tiveness of a chosen joint embedding and reconstruction-based
method on several downstream tasks commonly performed
in remote sensing: land use classification, object detection
and semantic segmentation. To do this, we study performance
variation by exploring two major criteria: the size of the
backbone and the pretraining dataset’s size and composition.

Our main contributions are as follows:
• We explore the effectiveness of SSL methods in the

context of remote sensing in several downstream tasks,
including dense tasks such as object detection and se-
mantic segmentation.

• We use several pretraining datasets of different size and
composition, including very high-resolution commercial
images and applications in both civilian and military



contexts. Furthermore, we study the benefits of such
datasets compared to publicly available ones.

• We conduct our experiments on several backbone sizes to
study the scaling capabilities of each method, including a
large backbone that isn’t commonly used in other works.

• We compare in-domain pretrainings with publicly avail-
able weights that serve as practical baselines for limited
budgets and question the necessity to perform dedicated
pretrainings to achieve high downstream performance.

As shown in Fig. 1, our internal datasets, combined with
MAE, are able to consistently outperform other approaches.
However, we note that publicly available weights are compet-
itive alternatives when custom pretraining is not an option.
We hope that our work proves useful to practitioners in
facilitating the selection of an SSL method for remote sensing
applications.

II. RELATED WORK

A. Self-supervised Learning

SSL methods can be classified into different families based
on how they interact with data. joint embedding methods learn
to map similar data points close to each other in a latent
space, while performing the opposite for dissimilar data points.
MoCo [1] is arguably one of the reference methods of this
family, building positive pairs using random data augmentation
on a given image, and negative pairs using other images.
Additionally, a contrastive loss that incentivizes similar em-
beddings for positive pairs and dissimilar embeddings for
negative pairs is computed. To store negative pairs, MoCo
uses a dictionary queue of fixed size (also called memory
bank), which is decorrelated from the batch size. SimCLR
[2] follows the same strategy, but uses the images contained
in the current batch to form negative pairs, which alleviates
the need of maintaining a queue, but requires a large batch
size to achieve good performance. Later on, MoCo-v2 [3]
and MoCo-v3 [4] improve the performance of the original
method by using components from SimCLR and by replacing
the original ResNet50 encoder with a ViT.

Another family of interest is reconstruction-based methods.
Specifically, MAE [5] is arguably one of the most commonly
used method of this type, which uses a ViT-based encoder-
decoder architecture. The input image is first divided into non-
overlapping patches of equal size. Then, most of the patches
(typically 75%) are masked and the remaining patches are
sent through the encoder as a sequence. Finally, the decoder
aims at reconstructing the masked parts of the input as a
reconstruction loss is used for learning. MAE significantly
improves the efficiency of pretraining by only processing the
visible patches.

B. Self-supervised Learning in Remote Sensing

The application of SSL methods in the field of remote
sensing has received much attention in recent years [6], which
can be explained by the large amount of available data and the
high cost of the annotation process. These methods proved
to be a competitive alternative to the traditional supervised

learning methods [7]. Additionally, remote sensing imagery
comes with its own set of characteristics that can be exploited
to further improve performance, e.g., varying Ground Sample
Distances (GSD), temporal dependencies between images,
or the availability of additional bands in the context of
multispectral imagery. Following this direction, adaptations
of existing SSL methods have been proposed to take into
account such specificities. SatMAE [8] leverages temporal and
multispectral information during the reconstruction task by
concatenating image timestamps to the positional encoding,
and by using a curated selection of additional multispectral
bands on top of the usual RGB ones for pretraining. Scale-
MAE [9] incorporates a form of multi-scale decoding using
Laplacian pyramids and proposes an update of the positional
encoding to take into account the GSD of satellite images.
SatMAE++ [10] extends Scale-MAE to work with multiple
image scales by downsampling the input image twice and
only sending the most downsized image through the encoder-
decoder before upsampling it back to its original resolution. In
this paper, we compare generic SSL methods with ones that
take advantage of these specificities, and measure the expected
gains associated with this additional complexity.

C. Self-supervised Learning Benchmarks in Remote Sensing

In the context of remote sensing, few works are dedicated
to benchmarking SSL methods. Wang et al. [11] proposes an
exhaustive review of SSL methods, including MoCo-v2, and
provides a benchmark of several methods on three datasets.
However, evaluation is only performed on a classification
task using linear probing. Corley et al. [12] studies the
impact of image sizing and normalization during pretraining
on downstream task performance, and argues that ImageNet
pretraining is a solid competitor. Nonetheless, this work only
studies classification as a downstream task and MoCo-v2 as a
pretraining method, and doesn’t perform any finetuning.

On another note, some works that aim at building geospatial
foundation models also provide extensive benchmarks of sev-
eral SSL methods and downstream tasks. Similar to our work,
Cha et al. [13] investigates the impact of increasing the number
of model parameters in the context of SSL pretraining applied
on object detection and semantic segmentation, primarily using
ViTs. However, this work only explores a single pretraining
method and a single pretraining dataset. More recently, Guo et
al. [14] compares their proposed SkySense foundation model
with a handful of SSL methods built for remote sensing, on
various downstream tasks including classification, segmenta-
tion and detection. However, no attention is given to generic
SSL methods nor ImageNet pretraining, as well as pretraining
efficiency.

In contrast, our work focuses on the impact of different
SSL methods on downstream task performance (classification,
detection and segmentation) using two backbone sizes. It
also investigates the impact of the pretraining dataset size
and composition, while providing a pragmatic look on the
necessity to perform a dedicated pretraining by comparing the



achievable performance with more frugal approaches based on
publicly available weights, e.g., ImageNet.

III. EXPERIMENTAL SETUP

In the following, we thoroughly compare the performance
of joint embedding methods and reconstruction-based methods
on various downstream tasks, in the context of remote sensing.
Specifically, we choose to compare the performance of MoCo-
v3 and MAE as two reference approaches, respectively, for
these two families, and also as commonly used methods in
remote sensing. The objective of these experiments is to
get a better understanding of how each family of methods
behaves with respect to the chosen downstream task, which
in turn is useful to decide which pretraining method to favor
when working on a downstream task. One might also wonder
if remote sensing specific data and designs are necessary
and significantly beneficial for downstream performance. For
this reason, we also compare our results with SatMAE and
SatMAE++ as the best performing remote sensing specific SSL
methods, and with several in-domain pretraining datasets of
various sizes. Finally, to measure the impact of backbone size,
we systematically use ViT-Base and ViT-Large as backbones
for all our experiments.

A. Pretraining

We study the impact of the pretraining data on downstream
performance by first performing a self-supervised pretraining
step on several remote sensing datasets. One of these is a
public reference in the field, while others are internal datasets
that we use to measure the expected gain when scaling the
pretraining dataset size; our largest dataset being around 2.5
million images, which is approximately seven times larger than
the public dataset we are using. In the following, we describe
each of these datasets and discuss implementation details for
the self-supervised methods we choose to focus on.

1) Datasets:
a) fMoW RGB: Functional Map of the World (fMoW)

[15] is a large-scale dataset for functional land use classifi-
cation. The dataset offers a wide range of ground resolutions
from 0.5m to 35m per pixel. Since the original image size of
fMoW varies, we pre-process the images identically to [15]
and resize the input images to 224× 224 pixels.

b) PRL-363k and PRL-2.5M: We build two high-
resolution datasets by using mostly commercial data from the
Maxar/DigitalGlobe satellites WorldView 2, 3, 4 and Pléiades
Neo 3, 4. PRL-363k consists of the same number of images
as fMoW RGB, i.e. 363,571 images. PRL-2.5M is a larger
dataset consisting of 2,552,188 images. Both datasets consist
of a curated collection of optical images with native GSDs
ranging from 0.3m to 0.7m per pixel, all resampled to 0.3m.
The geographic location of the images is not specified. The
original image size is 512×512 but a 224×224 random crop
of the input image is taken for pretraining.

2) Implementation Details:

a) MAE: The model configuration, optimizer and learn-
ing rate scheduler are the same as in [5]. We use 32 NVIDIA
A100 to pretrain our model for 800 epochs with a base
learning rate of 2.4e−4 and an effective batch size of 16,384
for ViT-Base and 8192 for ViT-Large. We adopt the linear
learning rate scaling rule [16]: lr = base lr × batchsize

256 . We
apply data augmentation by performing a random flip with
probability 0.5, and images are normalized using the standard
ImageNet normalization. We use ImageNet MAE pretrained
weights as initialization before pretraining following [17]. For
all subsequent finetunings, we use the last epoch to initialize
the backbone weights.

b) MoCo-v3: The model configuration, optimizer and
learning rate scheduler are the same as in [4]. We use 32
NVIDIA A100 to pretrain our model for 300 epochs with a
base learning rate of 2.4−4 and an effective batch size of
4096 for both ViT-Base and ViT-Large. As for MAE, we
adopt the linear learning rate scaling rule [16]. We apply
the same data augmentation as described in [4]. We use
ImageNet MoCo-v3 pretrained weights as initialization before
pretraining following [17]. For all subsequent finetunings, we
use the last epoch to initialize the backbone weights.

B. Downstream Tasks

Our pretrained models are finetuned on various downstream
tasks, including classification (fMoW, RESISC45), segmenta-
tion (SpaceNetV1) and object detection (DIOR, PRL-Vehicle
and PRL-Aircraft). In the following, we describe the content
of each dataset as well as the implementation details for
finetunings. Finally, we present the evaluation metrics used to
measure downstream performance and the selected baselines.

1) Datasets:
a) fMoW RGB: We also use fMoW as a downstream

classification task. We follow the official train and validation
splits, which consist of 363,571 images and 50,041 images,
respectively, distributed across 62 fine-grained and diverse
categories.

b) RESISC45: Northwestern Polytechnical University
(NWPU) developed RESISC45 [18], including 31,500 images
distributed across 45 different scene categories from over 100
countries extracted from Google Earth. Each category contains
700 labeled images of size 256 × 256 pixels, resulting in a
well-balanced distribution of scenes. The spatial resolutions
of the images range from 0.2 to 30 meters per pixel. We use
the dataset splits defined in [19] and keep the original input
image size of 256× 256.

c) SpaceNetV1: A dataset of 6,940 WorldView 2 satellite
images at 0.5m per pixel [20]. We convert the original building
footprint annotations (i.e. polygons) into segmentation masks
and use the same dataset split as [8]. We keep the original
image size of 400× 400 pixels.

d) DIOR: A large-scale benchmark dataset for object
detection in optical remote sensing images, which consists
of 23,463 images of resolution varying from 0.5 to 30m per
pixel and 192,518 object instances annotated with non-oriented
bounding boxes. We follow the official train, validation and



TABLE I
STATISTICS FOR PRL-VEHICLE AND PRL-AIRCRAFT OBJECT DETECTION

DATASETS

Observable Split Images Pos. tiles Neg. tiles Num. Objects

train 204 49,932 9,963 369,851
Vehicle val 63 20,297 43,409 170,864

test 88 4,712 46,269 32,550

train 3,239 19,110 3962 51,136
Aircraft val 202 2,067 5,348 5,386

test 83 496 17,393 1,235

test splits, which are composed of 5,862 images, 5,863 images,
and 11,738 images, respectively.

e) PRL-Vehicle and PRL-Aircraft: Our internal down-
stream datasets consist of Maxar WorldView-3 satellite images
at 0.3m resolution, divided into tiles of 224 × 224 pixels
and 512 × 512 pixels for vehicle and aircraft, respectively.
The statistics of our datasets are reported in Table I. The
vehicle dataset covers 8 military and civilian classes, while
the aircraft dataset covers 6 military and civilian classes. Note
that for PRL-Vehicle, we expect results to be on the lower end
compared to other datasets as objects are very small.

2) Implementation Details:
a) Classification: We use a linear classification head

on top of the ViT backbone. Augmentations, optimizer and
learning rate scheduler are the same as in [5]. We use an
effective batch size of 2048 for ViT-Base and 1024 for ViT-
Large. Regarding the training we use a base learning rate of
2e−3 and 4e−3 for ViT-Base and ViT-Large, respectively. For
the other configurations, we use a base learning rate of 1.5e−4.
We apply a layer-wise learning rate decay [21] of 0.75 for
ViT-Large and 0.65 for ViT-Base following [22]. We use 4
NVIDIA V100 and finetune for 50 epochs on fMoW-RGB
and 100 epochs on RESISC45, as in [9].

b) Segmentation: We use the UPerNet [23] head to
perform semantic segmentation, as well as the feature pyramid
implementation of ViTDet [24] to exploit multi-scale features.
Augmentations, optimizer and learning rate scheduler are the
same as in [8]. We use a base learning rate of 1.5e−4 and an
effective batch size of 64 for both ViT-Base and ViT-Large.
We use 4 NVIDIA V100 and finetune for 100 epochs on
SpaceNetV1, as in [8].

c) Detection: We use a RetinaNet [25] head to perform
the detection task as well as the feature pyramid implemen-
tation of ViTDet [24]. Augmentations, optimizer and learning
rate scheduler are the same as in [8]. The effective batch size
is 64 for each dataset. For PRL-Aircraft and PRL-Vehicle,
we use 4 NVIDIA V100 and finetune for 50 epochs. For
DIOR, we use 4 NVIDIA A100 and finetune for 100 epochs.
During finetuning we use LoRA [26] to get a better and
faster convergence. Note that we do not use LoRA for other
downstream tasks as it results in a performance drop.

C. Evaluation Metrics

We use the following metrics for our evaluations:

• Classification Top-1 accuracy. The evaluation epoch is
selected based on the highest top-1 accuracy achieved on
the validation set.

• Segmentation Mean Intersection over Union (IoU). The
evaluation epoch is selected based on the highest mean
IoU achieved on the validation set.

• Detection Mean average precision (mAP@0.5) of
the PASCAL VOC object challenge [27]. The evalua-
tion epoch is selected based on the highest mAP@0.5
achieved on the validation set.

D. Baselines
We compare our own pretrained backbones to several ref-

erence baselines that are identical for all downstream tasks.
The first group of selected baselines consists of ImageNet
pretrained weights. For that, we select supervised, MAE and
MoCo-v3 weights for both ViT-Base and ViT-Large back-
bones. The second group consists of in-domain baselines,
composed of SatMAE and SatMAE++ as they achieve state-
of-the-art performance in the field of remote sensing. For
compatibility reasons with the input data of our downstream
tasks, we only use the RGB weights (not the multi-temporal
or multi-spectral versions) of these methods. As weights are
only available for ViT-Large, SatMAE and SatMAE++ will
only be used as reference for this backbone.

IV. EXPERIMENTAL RESULTS

In this section, we discuss the results of our experiments
with the aim of drawing insights about the behavior or MAE
and MoCo-v3 when presented with various pretraining and
downstream datasets. In some cases, the performance achieved
by most methods are very close to each other. We argue that a
variance study would have been beneficial to consolidate our
conclusions, but we were not able to do so due to the high
amount of additional experiments to be run.

A. Classification
Table II shows the Top-1 accuracies for RESISC45 and

fMoW RGB. First, comparing the ImageNet baselines with our
own built pretrained weights, we can see that the ImageNet
baselines are strong. Specifically for RESISC45, the best
weights for ViT-Base are ImageNet supervised and MoCo-v3
pretraining on PRL-2.5M. For ViT-Large, the best performance
are obtained with ImageNet pretraining with MAE, closely fol-
lowed by PRL-2.5M pretrained with MAE. Regarding fMoW
RGB, our pretrainings outperform baseline approaches but
the gap is mainly noticeable on PRL-2.5M pretrained with
MAE, which ranks first for ViT-Base and ViT-Large. We argue
that the competitive performance of ImageNet baselines can
be explained by the fact that ImageNet is a dataset built
for classification with centered, well-sized observables. Thus,
features generated by supervised or SSL pretraining with
ImageNet should be adequate by design for any classification
task.

Regarding SatMAE and SatMAE++ with the ViT-Large
backbone, we can see that none of them outperform the Ima-
geNet MAE baseline, but, it should be noted that they support



TABLE II
TOP-1 ACCURACY ON THE RESISC45 AND FMOW CLASSIFICATION

DATASETS

Backbone Dataset Method RESISC45 fMoW

ViT-Base - Random init. 76.7 66.0
ViT-Base IN MoCo-v3 97.4 78.2
ViT-Base IN MAE 97.5 78.6
ViT-Base IN Sup. 97.6 79.0
ViT-Base fMoW MoCo-v3 97.5 79.2
ViT-Base fMoW MAE 97.5 79.5
ViT-Base PRL-363k MoCo-v3 97.5 78.9
ViT-Base PRL-363k MAE 97.5 80.1
ViT-Base PRL-2.5M MoCo-v3 97.6 79.8
ViT-Base PRL-2.5M MAE 97.4 80.1

ViT-Large - Random init. 70.5 68.6
ViT-Large IN MoCo-v3 97.2 78.0
ViT-Large IN MAE 97.9 79.7
ViT-Large IN Sup. 97.4 79.0
ViT-Large fMoW SatMAE 97.0 76.1
ViT-Large fMoW SatMAE++ 97.7 79.1
ViT-Large fMoW MoCo-v3 97.7 79.4
ViT-Large fMoW MAE 97.5 80.3
ViT-Large PRL-363k MoCo-v3 97.1 78.9
ViT-Large PRL-363k MAE 97.8 81.5
ViT-Large PRL-2.5M MoCo-v3 97.4 79.5
ViT-Large PRL-2.5M MAE 97.8 82.2

multi-spectral / multi-temporal inputs that our experimental
setup does not.

Looking at the benefit of our internal datasets against
the fMoW RGB dataset, we can see a positive performance
impact. Indeed, PRL-2.5M always ranks higher than fMoW
RGB, especially with the MAE paradigm, which highlights the
usefulness of scaling up the amount of pretraining data. PRL-
363k shows weaker results than PRL-2.5M, but still manages
to improve performance over fMoW RGB, especially with
the MAE paradigm, which could be explained by the higher
resolution of PRL-363k images compared to fMoW.

Finally, by focusing our attention on pretraining methods,
we can observe that the MAE paradigm shows better per-
formance than MoCo-v3. Indeed, except for the RESISC45
dataset with the ViT-Base backbone, MAE consistently out-
performs MoCo-v3. On top of that, we can see that the
use of PRL-363k or PRL-2.5M over fMoW has a negative
performance impact on MoCo-v3, which is not the case with
MAE.

B. Detection

Table III shows the mAP@0.5 for DIOR and both PRL-
Aircraft and PRL-Vehicle. The ImageNet baselines on all
datasets are competitive especially on the PRL-Aircraft dataset
where it ranks first for ViT-Base and among the top for ViT-
Large. For DIOR and PRL-Vehicle, the best performance is
achieved by pretraining with MAE on the biggest dataset
(PRL-2.5M). We argue that the particularly high performance
of ImageNet supervised pretraining on PRL-Aircraft might be
due to the fact that, compared to PRL-Vehicle and DIOR,
objects are closer to what can be found in ImageNet dataset,
i.e., covering a large portion of the image.

TABLE III
MAP@0.5 ON THE DIOR, PRL-VEHICLE AND PRL-AIRCRAFT

DETECTION DATASETS

Backbone Dataset Method DIOR Vehicle Aircraft

ViT-Base - Random init. 29.2 12.6 29.9
ViT-Base IN MoCo-v3 51.8 19.9 59.5
ViT-Base IN MAE 55.7 22.2 60.6
ViT-Base IN Sup. 56.2 20.6 65.4
ViT-Base fMoW MoCo-v3 52.2 20.2 57.0
ViT-Base fMoW MAE 55.2 23.4 55.6
ViT-Base PRL-363k MoCo-v3 51.7 21.9 59.6
ViT-Base PRL-363k MAE 55.6 22.9 58.3
ViT-Base PRL-2.5M MoCo-v3 53.1 24.3 57.2
ViT-Base PRL-2.5M MAE 60.5 25.4 64.6

ViT-Large - Random init. 21.4 4.9 30.0
ViT-Large IN MoCo-v3 55.2 19.8 65.3
ViT-Large IN MAE 61.5 24.1 63.3
ViT-Large IN Sup. 57.4 22.5 64.7
ViT-Large fMoW SatMAE 53.1 21.0 54.2
ViT-Large fMoW SatMAE++ 57.2 20.6 56.6
ViT-Large fMoW MoCo-v3 56.6 22.3 58.1
ViT-Large fMoW MAE 59.7 26.5 62.5
ViT-Large PRL-363k MoCo-v3 54.7 21.0 60.1
ViT-Large PRL-363k MAE 64.7 26.9 66.3
ViT-Large PRL-2.5M MoCo-v3 54.7 22.4 55.7
ViT-Large PRL-2.5M MAE 65.5 38.6 64.3

As for in-domain baselines, both SatMAE and SatMAE++
are among the worst performing methods except for DIOR
where SatMAE++ ranks in the middle near MoCo-v3 methods.

All other things being equal, using internal datasets such as
PRL-363k and PRL-2.5M instead of fMoW seems to be more
beneficial. However, the MAE pretraining on fMoW always
ranks higher that MoCo-v3 on PRL-363k, and sometimes
PRL-2.5M. In light of these results, we argue that the choice
of the pretraining method is essential in order to fully exploit
the benefits of large-scale pretraining datasets.

Finally, when comparing pretraining methods, we can ob-
serve that MAE always outperforms MoCo-v3 at comparable
settings. It has also better scaling properties, as going from
PRL-363k to PRL-2.5M, results in the highest gain in metrics
for MAE, whereas MoCo-v3 only achieves small or nonexis-
tent gains. This is also the case when going from ViT-Base to
ViT-Large. From that, we conclude that scaling the backbone
seems to have a greater impact than scaling the dataset.

C. Segmentation

Table IV shows the mean IoU for SpaceNetV1. First,
comparing the ImageNet baselines with our own pretrained
weights, we can see that the ImageNet baselines are com-
petitive, especially the ImageNet supervised one. Indeed, this
baseline is only outperformed by the MAE pretraining on
PRL-2.5M for the ViT-Base backbone and the MAE pre-
training for both PRL-363k and PRL-2.5M for the ViT-Large
backbone.

Regarding in-domain baselines, SatMAE is the worst per-
forming method, on the opposite of SatMAE++, which man-
ages to rank second among all models for the ViT-Large
backbone, making it a solid baseline.



TABLE IV
MEAN IOU ON THE SPACENETV1 SEGMENTATION DATASET

Backbone Dataset Method SpaceNetV1

ViT-Base - Random init. 70.8
ViT-Base IN MoCo-v3 74.5
ViT-Base IN MAE 76.9
ViT-Base IN Sup. 78.4
ViT-Base fMoW MoCo-v3 77.0
ViT-Base fMoW MAE 76.0
ViT-Base PRL-363k MoCo-v3 77.4
ViT-Base PRL-363k MAE 75.9
ViT-Base PRL-2.5M MoCo-v3 77.7
ViT-Base PRL-2.5M MAE 79.8

ViT-Large - Random init. 72.2
ViT-Large IN MoCo-v3 74.4
ViT-Large IN MAE 76.9
ViT-Large IN Sup. 77.9
ViT-Large fMoW SatMAE 75.3
ViT-Large fMoW SatMAE++ 79.0
ViT-Large fMoW MoCo-v3 77.0
ViT-Large fMoW MAE 77.1
ViT-Large PRL-363k MoCo-v3 76.2
ViT-Large PRL-363k MAE 78.8
ViT-Large PRL-2.5M MoCo-v3 75.7
ViT-Large PRL-2.5M MAE 79.8

When comparing our internal datasets with fMoW, we see
that pretraining with PRL-363k or PRL-2.5M shows benefits
over fMoW but mainly with MAE as pretraining with MoCo-
v3 often results in a performance loss.

At last, when looking at pretraining methods, we observe
that MAE performs better overall than MoCo-v3. Indeed,
except for the ViT-Base backbone pretrained on PRL-363k,
the performance of MAE is higher than MoCo-v3 in any other
case.

V. DISCUSSION

In this section, we provide general insights with the aim
of facilitating the choice of a pretraining methods. First, we
question the benefits of a custom in-domain SSL pretraining
over existing ImageNet pretrained weights. Table V shows
the difference between several aggregations from our different
downstream results. If not mentioned otherwise and applicable,
all aggregations consider both backbones (ViT-Base and ViT-
Large), both paradigms (MAE and MoCo-v3) and exclude
results from SatMAE and SatMAE++, as they tend to achieve
sub-par performance in our RGB setting.

The first column shows the average performance gap of
using in-domain SSL pretraining over ImageNet baselines. It
shows that in-domain SSL pretrained weights provide benefits
in term of downstream performance for segmentation, but with
mitigated results for classification and detection. We argue that
the supervised pretraining on ImageNet, a classification task,
can yield better representations for a classification downstream
task. Considering these results, we recommend using already
available ImageNet weights when working on classification,
and potentially go for a dedicated pretraining with the MAE
paradigm to try to push the performance further.

The second column shows the potential benefit of using
PRL-363k over fMoW, knowing that they have the exact same
number of images but that PRL-363k is of higher native
resolution. We compare the difference of the average metrics
for PRL-363k against fMoW, and show that there are no strong
positive benefits for the classification task and close to no
benefits for the segmentation and detection tasks, except for
the aircraft outlier. We argue that the domain gap between
PRL-363k, which contains high resolution images, and down-
stream task datasets, which contain a mix of resolutions closer
to the ones in fMoW, can be responsible for this absence of
significant benefits. Finally, we hypothesize that pretraining on
fMoW should yield better downstream performance on fMoW
as the model has already seen the data during the pretraining
step.

The third column shows the average performance gap of
pretraining on PRL-2.5M over fMoW, e.g. with a bigger and
high resolution dataset. Results show that there are clear bene-
fits using the PRL-2.5M, confirming that pretraining on larger
datasets can be beneficial. Additional experiments could be
dedicated to studying the impact of pretraining resolution on
downstream performance by lowering the resolution of PRL-
2.5M . Based on the results of this column and the previous
one, we would recommend building an internal pretraining
dataset only if its expected size is higher that publicly available
datasets. Building an aggregate of various public datasets can
also be an interesting alternative, as in [28].

The last column shows the performance gap from using
MAE over MoCo-v3. Overall, MAE provides better perfor-
mance than MoCo-v3, and the gap between MAE and MoCo-
v3 grows larger using a ViT-Large backbone when using the
same pretraining dataset. Thus, we argue that MAE should
be favored as it scales positively on all downstream tasks and
backbone sizes.

On another note, pretraining requires a significant amount
of computing power to converge within few hours or days.
During our experiments we have observed a large difference
in terms of speed and memory usage, thus we choose to
report the efficiency as a major criteria of evaluation, to
compare the MoCo-v3 and MAE. Figure 2 shows that the
time required to pretrain using one image sample is much
higher with MoCo-v3. In addition, we note that the memory
consumption significantly increases with MoCo-v3, forcing us
to reduce the batch size (4 times smaller than MAE for ViT-
Base, as discussed in Experimental Setup) and thus increasing
the number of iterations for each epoch. We believe that MAE
is the best compromise in terms of efficiency, reaching the best
performance with a given compute budget.

In light of these results, we can draw the following conclu-
sions:

• Dedicated pretraining is beneficial for most down-
stream tasks As shown in the results, using weights from
a dedicated in-domain pretraining outperforms ImageNet
baselines except for two downstream tasks (RESISC45
and PRL-Aircraft) when pretraining is performed with
ViT-Base.



TABLE V
SUMMARY OF DOWNSTREAM TASK PERFORMANCE FOR ALL METHODS

Downstream task Dataset (fMoW, PRL-363k, PRL2.5M) PRL-363k vs fMoW* PRL-2.5M vs fMoW* MAE vs MoCo-v3
vs baselines

Segmentation SpaceNetV1 +0.9 +0.3 +1.5 +1.4

Classification RESISC45 0 -0.1 0 +0.19
fMoW +1.2 +0.25 +0.8 +1.3

Detection DIOR +0.2 +0.8 +1.1 +6.8
Vehicle +2.9 +0.1 +3.9 +5.1
Aircraft -4.1 +3.9 +1.4 +2.7

*Comparing average metric considering ViT-Base and ViT-Large backbones. SatMAE and SatMAE++ always excluded.

Fig. 2. Time required to process one image during the pretraining, depending
on the SSL Method and backbone type. The measured time includes forward
and backward passes.

• MAE outperforms MoCo-v3 overall MAE is able
to consistently outperform MoCo-v3 while being com-
putationally more efficient. Furthermore, it is able to
scale better when using a bigger backbone or pretraining
dataset.

• Publicly available weights are solid competitors With-
out any additional pretraining, using publicly available
weights is enough to achieve competitive performance.
When working with a limited budget, it seems fine to use
ImageNet, SatMAE, or SatMAE++ pretrained weights.
However, performing a dedicated pretraining remains
interesting when pushing for the best performance on
dense downstream tasks.

VI. CONCLUSION

In this paper, we study and compare the downstream
performance of commonly used pretraining methods in the
context of remote sensing imagery. We select a reference
method for two families of self-supervised approaches and

investigate their benefits on different downstream tasks. We
pretrain MoCo-v3 and MAE on several datasets of different
scale and composition and show that increasing the amount
of pretraining data significantly improves the performance
in downstream tasks. Experimental results also show that
MAE is a strong competitor that achieves the best overall
performance on the chosen downstream tasks while exhibiting
better backbone scaling capabilities, and that using publicly
available ImageNet weights is usually sufficient to achieve
satisfactory performance. Finally, we show that pretraining
methods that are specific to remote sensing are competitive
alternatives, but do not manage to outperform more generic
approaches by a large margin. Future directions of this work
include expanding the number of benchmarked SSL methods,
as well as studying the impact of GSD in the pretraining
data. Furthermore, the study of other backbones may prove
useful, as other architectures may yield different results. At
last, methods to build datasets that best benefit the pretraining
phase also constitute a promising direction of research.
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