
Improving binary diffing through similarity and
matching intricacies

1st Roxane Cohen
Quarkslab

LAMSADE, CNRS, Université Paris Dauphine - PSL
Paris, France

rcohen@quarkslab.com

2nd Robin David
Quarkslab

Paris, France
rdavid@quarkslab.com

3rd Riccardo Mori
Quarkslab

Paris, France
rmori@quarkslab.com

4th Florian Yger
LITIS, INSA Rouen Normandy

Rouen, France
florian.yger@insa-rouen.fr

5th Fabrice Rossi
CEREMADE, CNRS, Université Paris Dauphine - PSL

Paris, France
fabrice.rossi@dauphine.psl.eu

Abstract—Reverse-engineering represents a key aspect of cy-
bersecurity as it helps to understand unknown software or
systems. From a defender’s point of view, it may detect sus-
picious binaries or existing vulnerabilities inside organization
systems. From an attacker’s point of view, it offers insights
into potential threats or weaknesses of a target. In particular,
reverse-engineering relies on binary diffing, whose goal is to find
similarities and differences between different binaries or program
variants. Such a task is essential as software are constantly evolv-
ing over time. However, it is notoriously difficult, despite the large
number of research papers on this subject. Many approaches
have been explored, ranging from rule-based decision algorithms
to advanced Deep Learning (DL) models. Such difficulty can
be explained by the inherent nature of binary code, which is
unstable and prone to many syntactic differences while semantics
are unaltered. Determining if two binary functions are similar
is already a complex task as such similarity should describe the
semantics and not the syntactic properties. Obtaining a diffing, a
correspondence between functions of two binaries, is even more
difficult.

In this work, we present a binary differ, called QBinDiff,
and detail how it is adapted for a modular and fine-grained
diffing. We conduct an empirical study about its properties,
from its algorithm to its implementation, through an ablation
study. We present the diffing discipline, the existing approaches,
some of them being state-of-the-art, and establish a comparison
benchmark between them on standard binaries. We show in
particular that QBinDiff performs better than existing differs,
thanks to its modularity.

Index Terms—Binary Similarity, Binary diffing, Graph Neural
Networks, word2vec

I. INTRODUCTION

Reverse-engineering has been widely used for defense pur-
poses such as malware or cryptography analysis and vulner-
ability search. More specifically, binary diffing, a subdomain
of reverse-engineering, consists in identifying similarities and
differences between two binaries. It is used for malware diffing
[25], patch analysis [31], program similarity [4], backdoor
detection, anti-plagiarism, clustering different malware by
their families or establishing a malware lineage that could
be attributed to a specific Advanced Persistent Threat (APT).

Diffing usually operates at the function level and tries to
find an assignment between the functions of two binaries.
The underlying assumption is that disassembly and function
recovery are feasible. However, in practice, this is known as a
complex problem [20] and in this paper, we rely on IDA-Pro
1 or Ghidra 2 for disassembly purposes. In addition, the initial
binary representation may be considerably altered during the
compilation process, due to optimization passes. Among them,
inlining or loop unrolling alters the function control-flow logic.

Usually, binary diffing strongly relies on graphs extracted
from disassembly, such as Control-Flow Graph (CFG) where
nodes are Basic Blocks (BB) and edges represent execution
flow within the function scope and, Call Graph (CG) where
nodes are program functions and edges denote inter-procedural
relationships. Consequently, many graph-centered works have
been published with an increasing attention dedicated to
Machine Learning (ML) and Deep Learning (DL) based ap-
proaches [3], [4], [17], [18], [26], [30]. If these methods show
promising results for solving binary similarity, DL methods
require large computational resources. Retraining a model or
simply using it for inference may be unaffordable. Besides,
binary similarity models output, given a candidate function,
its closest counterpart inside a pool of functions. They do not
compute the direct matching between two binaries. Conse-
quently, obtaining a final diffing between two binaries requires
to further apply a matching step using computed similarity
scores. Furthermore, DL model source code or datasets are
not always available and reproducibility is difficult. For these
reasons, mostly BinDiff [5], [7] and Diaphora [14] are used in
practice. In fact, in comparison to advanced DL models, they
scale relatively well using criteria-based matching. However,
for those who want finer and more adapted control over
the diffing results, they may not be adapted as they are not
modular or difficult to parametrize. In order to provide a more

1https://hex-rays.com/ida-pro
2https://ghidra-sre.org/

https://hex-rays.com/ida-pro
https://ghidra-sre.org/


accessible diffing solution, QBinDiff3 was open-sourced as a
modular differ.

The main contributions of this work are:
• We present QBinDiff, an open-source network alignment

solver, that can be applied for binary diffing. We analyze
its underlying algorithm, in particular its modular func-
tionality given the available features and parameters that
can be combined to obtain fined-grained results tailored
for each use case.

• We realize an ablation study of QBinDiff components
to highlight how they are intertwined and how they
contribute to QBinDiff results.

• We perform an empirical comparison between standard
binary differs, such as BinDiff and Diaphora. We also
analyze more recent DL-based methods such as Graph
Matching Networks [17], Asm2vec [3], PalmTree [16]
and JTrans [30]. In particular, we show that QBinDiff of-
fers the best performances compared to other approaches.

Section II presents the concepts of binary diffing and
similarity and the current approaches. Section III details the
QBinDiff algorithm and its ablation study. A fair comparison
between state-of-the-art diffing solutions is performed in Sec-
tion IV whereas Section V establishes some discussions about
the limitations of this work and further research that could be
conducted. Finally, Section VI concludes this work.

II. BINARY ANALYSIS

Binary diffing involves identifying similarities and discrep-
ancies between two binary programs. Minor modifications or
slight patches resulting from version updates or compilation
differences should be detected by diffing tools. Binary diffing
is defined as a one-to-one mapping ϕ : (P,S) 7−→ ρ, where
P represents the primary function set of size n, S represents
the secondary function set of size m, and ρ : P −→ S is
a partial and injective assignment function. This ensures that
each function in P is matched to at most one function in
S. Other definitions consider various program granularities,
such as BB [4]. Additionally, the mapping could be expanded
to one-to-many [14] or many-to-many correspondences. Usual
diffing is performed without access to source code or symbols.
BinDiff [5], [7] and Diaphora [14] are widely used binary
diffing tools in the reverse-engineering community. Common
metrics for evaluating diffing include recall, precision, and f1-
score.

Binary similarity is applied in order to find the most
similar function to f inside a pool of candidate functions. A
natural application is vulnerability search, because for a given
vulnerable function, it is possible to find, from a database of
functions, the most similar one, which probably also contains
the same vulnerability. It is an active research field relying
heavily on Machine Learning (ML) and Deep Learning (DL).
Usual ML methods rely on precomputed features derived from
assembly code or CFG. For example, TIKNIB [13] computes
similarity scores using a specific distance combining various

3https://github.com/quarkslab/qbindiff

handcrafted features and BinShape [28] starts by extracting
features and sorts them to obtain the top-ranked ones that are
given to a decision tree.

Most importantly, DL techniques have become prevalent
in this research area and are inspired by Natural Language
Processing (NLP). Asm2Vec [3] is based on a refined and
enhanced version of the word2vec model [24] applied on
assembly text. Trex [26] and JTrans [30] are motivated by the
recent success of transformers for large language models. The
same holds for PalmTree [16], based on BERT but pre-trained
on several assembly representation tasks, such as instruction
reordering, as it is possible in assembly to switch several
instructions without modifying the general semantics of the
code. Graph Neural Network (GNN) is a new promising
research area, that is gaining more and more popularity. The
latest research articles mostly use increasingly complex GNN,
with a pretrained language model used to produce initial
GNN features and that relies on node assembly instructions
[19]. Graph Matching Network (GMN) [17] is the first work
that jointly learns graph embeddings on similar graph pairs
rather than independent embeddings. Based on this principle,
more GNN architectures or language models are explored
[8], [18], [29]. Despite the large amount of new academic
solutions, few of them provide a maintained implementation.
Moreover, training these models can be quite challenging,
even with the source code and the dataset. Additionally, such
binary similarity models are not exempt from failures, as some
adversarial attacks inspired by the ML field have been applied
to disrupt specific binary similarity tools [1].

Remark. Binary diffing and binary similarity are two dis-
tinct problems. Even though they share many common aspects,
their purposes are distinct. Binary diffing aims to find an
assignment between the functions of two binaries and may
rely on similarity scores to establish matches. Conversely,
binary similarity only outputs similarity scores between pairs
of candidate functions. To be further used to perform diffing,
binary similarity models should be followed by a matching
process to perform binary diffing.

III. QBINDIFF: A MODULAR DIFFER

This Section presents QBinDiff and the corresponding ab-
lation study of its components. Such ablation experimentation
helps understand the intricacies of programs and their repre-
sentation as graphs.

A. QBinDiff

QBinDiff [21]–[23] is a modular one-to-one differ. Given
two graphs, respectively called primary and secondary, it
solves an instance of the network alignment problem [6],
namely finding a matching between the respective nodes of the
two graphs, by expressing the link between objects similarities
(as graph nodes) and relationships between these objects
(graph edges), using in particular a belief propagation algo-
rithm [21]. This algorithm represents this alignment problem
using a graphical model, where nodes indicate variables of
the problem and edges denote dependencies between these

https://github.com/quarkslab/qbindiff


variables. It iteratively updates values associated to the vari-
ables using “messages” sent through graph edges. Once it
has converged, marginal probabilities are used to determine
the optimal solution of the problem. This paper focuses on
the experimental aspects of QBindiff, while mathematical
foundations and details are already provided [22].

Algorithm 1 QBinDiff algorithm
Require: Primary binary p , Secondary binary s, (features, weights), parameters=(d,

sratio, α, ϵ), Optional list of pre-passes and post-passes
Ensure: Matching between p and s functions
1: S ← Anchoring(p, s)
2: for passi ∈ pre-passes do
3: S ← passi(p, s, S) ▷ similarity matrix refinement passes before feature

extraction
4: end for
5: featuresp ← FeaturesExtraction(p, features)
6: featuress ← FeaturesExtraction(s, features)
7: S ← Similarity(featuresp, featuress,S, weights, d)
8: for passi ∈ post-passes do
9: S ← passi(p, s, S) ▷ refinement passes after feature extraction

10: end for
11: S ← Decimation(S, sratio)
12: squares-matrix← Squares(S, GetCG(p), GetCG(s))
13: match← Belief Propagation(S, squares-matrix, GetCG(p), GetCG(s), α, ϵ)
14: return match

QBinDiff, whose algorithm is shown in Algorithm 1, con-
sists of three main components and several parameters:
• a similarity matrix (S) encoding the similarity value

between each pair of nodes between the two graphs,
computed using a preset of heuristics, named features
that describes the function and the whole program.

• a weight matrix (squares matrix) that encodes the induced
common edges in both graphs for each possible node
assignment,

• a number of user-configurable parameters, among which
we distinguish the tradeoff denoted α, the sparsity sratio
and the relaxation parameter ϵ.

First of all, the anchoring phase is used to pre-match
imported functions. Optional passes can be defined for a spe-
cific initialization of the similarity matrix. Then, features for
primary and secondary functions are computed, where features
denote the data that will be extracted from the binaries: it can
be CFG structural features such as the number of BB per
function or related to the CG topology like the callee number
of a function, or even the assembly instruction mnemonics or
the function constants. QBinDiff offers 33 different features in
total, that represent the full features set.4 The similarity matrix
S is computed with a weighted linear combination of distances
over the primary and secondary feature vectors. Distance
candidates are: Canberra, Euclidean, cosine and Haussmann5

The similarity matrix S represents the similarity between
each node of the primary and each node of the secondary. In-
tuitively, it should encode domain-specific knowledge coming
from the problem instance that the graphs are representing.
For binary diffing, an entry S[i, j] close to 1 means that the

4A complete list is available on the QBinDiff documentation website [27].
5The Haussmann distance is a unique function defined by QBinDiff that

combines both the Jaccard index and the Canberra metric, see https://diffing.
quarkslab.com/qbindiff/doc/source/params.html#haussmann

node i in the primary is really similar to the node j in the
secondary, depending on a given metric. On the other hand, a
value close to 0 indicates a high dissimilarity between the two.
In most cases, the similarity matrix tends to be too large and
has to be decimated by using the sparsity ratio sratio ∈ [0, 1]
that removes the lowest similarity scores that will probably
not lead to a match.

The squares matrix can be directly derived from the graph
structure and the similarity matrix S. A square is defined as
a tuple of nodes (A, B, C, D) such that all the following
conditions are true:
• Nodes A and D belong to the primary graph.
• Nodes B and C belong to the secondary graph.
• (A, D) is a directed edge in the primary graph.
• (B, C) is a directed edge in the secondary graph.
• Similarity scores for square nodes are positives: S [A,B]>

0 and S [D,C]> 0.
The tradeoff parameter α ∈ [0, 1] is similar to a cursor

that insists either on the similarity or the graph topology.
α = 0.0 means that only the graph structure is considered
to compute the matches, while the similarity is disregarded.
On the contrary, α = 1.0 indicates that only the similarity
matters. ϵ ∈ [0, 1] is a relaxation parameter that helps the
Belief Propagation [21] to converge.

B. Ablation : experimental settings

We detail the experimental settings that support the ab-
lation study of QBinDiff. We use the Dataset-1 [18] that
contains various binaries compiled with different options
(compilers, compiler versions, optimization levels) from dif-
ferent projects: zlib, unrar, curl, clamav, nmap
and openssl. For each project, we randomly split the
associated binaries into two sets, named A and B. As an exam-
ple, x64-clang-7-O1-libz.so.1.2.11 will be part of
Dataset-1A and x64-clang-5.0-O3-libz.so.1.2.11
of Dataset-1B. Similarly, x64-gcc-7-O0-unrar will be
part of Dataset-1A and x64-clang-3.5-O1-unrar of
Dataset-1B.6 The intersection of binaries from Dataset-1A
and Dataset-1B is empty. In this ablation study, we only
use the Dataset-1A. It contains 366 binaries from the pre-
vious projects, compiled with clang or gcc, with dif-
ferent versions, from optimization level -O0 to -Os, that
represents 425,523 functions. Only x86-64 binaries are
kept. We only diff a binary against another version of
itself: this means we can diff a x64-gcc-7-O2-nmap
against a x64-clang-3.5-O1-nmap but not against a
x64-clang-3.5-O1-nping.7 Diffing pairs were estab-
lished at random given the previous conditions. Once they are
established, we automatically create ground-truth by matching

6Notice that each project has a different number of corresponding binaries.
unrar has only one binary while openssl has 10 binaries.

7Such assumption is valid for binary diffing as a reverse-engineer rarely
tries to find the exact mapping between two completely different binaries (as
nmap and nping for example), even though they may share some functions.
This assumption does not always hold for other binary problems, such as the
binary similarity problem [18].

https://diffing.quarkslab.com/qbindiff/doc/source/params.html#haussmann
https://diffing.quarkslab.com/qbindiff/doc/source/params.html#haussmann


zlib curl clamav unrar nmap openssl

No anchoring 0.72 0.71 0.71 0.72 0.68 0.69

With anchoring 0.81 0.84 0.85 0.79 0.79 0.79

% gain +12.5 +18.4 +19.8 +9.8 +16.2 +14.5

TABLE I: f1-score anchoring results. Parameters are default
ones and the feature set is full.

■ standard ■ disturbed similarity matrix ■ modified
adjacency matrices.

Fig. 1: QBinDiff f1-scores on zlib for various tradeoffs and
settings.

functions with the same name. This ground-truth is globally
reliable but may have limits. Compilers can inline or outline
functions which add noise to the ground-truth. Next, we
strip the binaries so that function names cannot be used for
the diffing. At this point, there is only one remaining step
before the proper diffing: the export. Most differs rely on
binary exporters: BinDiff uses BinExport, Diaphora has its
own export format. QBinDiff was created in order to handle
different exporters and it now supports BinExport and Quokka
[2], respectively developped by Google and Quarkslab. The
default QBinDiff parameters ps were previously defined as
the Canberra distance, α = 0.75, sratio = 0.75 and ϵ = 0.5
[21].

To evaluate the differ performances, we consider three usual
metrics: the recall (R), the precision (P) and the f1-score.
They are defined as follows:

P = TP
TP+FP R = TP

TP+FN f1-score = 2×P×R
P+R

with TP denoting True Positive, FP False Positive and FN
False Negative.

Intuitively, the precision denotes how many retrieved items
are relevant whereas the recall indicates how many relevant
items are retrieved. Precision and recall being complementary
metrics, we focus on maximizing the f1-score as it measures
a trade-off between precision and recall and requires both
metrics to be high.

C. Anchoring

Anchoring (step 1 in Algorithm 1) aims to use imported
functions as reliable anchors, especially for dynamically-
linked binaries, before any further matching step. We analyze

■ Data ■ Data & CFG ■ Data & CFG & CG
Fig. 2: QBinDiff features impact on the zlib project.

this functionality to determine if it helps QBinDiff to converge,
and to evaluate the performance gain compared to the case
where we have to match every function candidate. Results
are displayed in Table I. f1-score is averaged per project, not
per binary. Notice that the f1-score gain with anchoring is
significant: instead of having to match every function, we can
rely on the imported functions as anchor points to rather match
only function clusters that depend on these anchors, which is
computationally much easier.

D. Similarity and CG topology impact

A core QBinDiff parameter is the tradeoff α (step 13 in
Algorithm 1) that determines how much QBinDiff should
focus on the similarity or the CG topology. Then, a user may
decide to focus more on the similarity than the CG structure if
it provides better diffing. We choose to observe what happens
when we make the tradeoff α vary and respectively, use the
default QBinDiff configuration, QBinDiff with a disturbed
similarity matrix, and QBinDiff with disturbed adjacency
matrices. We disturb the similarity matrix by adding a uniform
random noise over its elements. We replace the original
adjacency matrices by modified ones using Metropolis-Hasting
algorithm [10] (swapping is repeated for 2,000 iterations and
self-loops are not allowed). Because these perturbations are
mainly built over randomness, we repeat the diffing process
with different seeds and average the results. Figure 1 plots
results for the zlib project. We observe several aspects:
• With standard QBinDiff, the f1-score shows two brutal

variations: when we increase the tradeoff from α = 0.0
to α = 0.1 and from α = 0.9 to α = 1.0. With
α = 0.1, the similarity starts to be incorporated to the
diffing process. This is highlighted by the significant
performance increase. Similarly, when we switch the
tradeoff from α = 0.9 to α = 1.0, the CG topology is
not considered anymore, resulting in a lack of information
from the CG. Consequently, the f1-score drops suddenly.
This demonstrates the necessity to consider both the CG
topology and the similarity given by the features extracted
from the binaries.

• When we disturb the adjacency matrices and set a lot of
weight on the topology, we rely almost only on noisy



■ zlib ■ clamav ■ curl ■ openssl ■ unrar ■ nmap

Fig. 3: Distance (d), epsilon (ϵ), tradeoff (α) and sparsity (sratio) impact on the different projects.

structural information, resulting in a lower f1-score. By
increasing α, namely by according more weight on the
true similarity, we improve the performances until we
reach the standard QBinDiff score. This means that we
can deal with a noisy adjacency by using a high tradeoff
centered on similarity.

• When the similarity matrix is disturbed, increasing the
tradeoff from α = 0.0 to around α = 0.5 helps to
improve the f1-score. Then, the similarity, even noisy,
is still necessary for a small α. However, according too
much weight on the noisy similarity leads to a significant
performance decrease.

E. Best parameter search

F. Features impact

QBinDiff proposes more parameters to adjust than α. In-
deed, the similarity matrix is computed by applying a weighted
linear combination of distances over features vectors (step
5-6 in Algorithm 1). These features, chosen by the user,
describe several aspects of a binary: data-related information,
such as the feature DatName that indicates data references,
CFG-related data like the feature BBlockNb which denotes
the number of BB inside a function or CG-based features as
the ChildNb feature, which indicates the number of callees
of a given function inside the CG. For this experiment, we
define three feature sets, each of them including features from
different categories.

The f1-score results for zlib binaries, using these features
sets and the default parameters ps, are shown in Figure 2.

We observe that with α = 0.0, because we do not consider
similarity to compute matches, no matter what the features
are, the f1-scores are similar for all the features sets. When
we start to consider the similarity (α > 0), several differences
appear. When α = 1.0, since we are not considering the CG
topology anymore, it becomes particularly useful to choose
features extracted from the CG, that make use of that structural
information.

The rest of this paper will always consider the default
feature set, which includes all the available QBinDiff features
at this date8, especially data, CFG and CG features.

As mentioned before, QBinDiff can be tuned by carefully
choosing its parameters d, ϵ, α, sratio. Finding the best param-
eters would require testing every combination over the search
space, which is not affordable in practice. For this reason,
we decided to start with the default parameters ps (Canberra
distance, α = 0.75, sratio = 0.75 and ϵ = 0.5) and modify
only one parameter at a time (replace the ps Canberra distance
with Haussmann distance for example), to observe the differ’s
behavior. We make this parameter search on the Dataset-1A.
Respective plots for d, ϵ, α and sratio are shown in Figure 3.

From these plots, we deduce that:
• A tradeoff highly focused on the similarity, such as α =

0.8 or α = 0.9, is better.
• Choosing a high ϵ, such as 0.9 or 1.0, helps QBinDiff to

converge faster.
• Canberra or Haussmann are the best distances.

8https://diffing.quarkslab.com/qbindiff/doc/source/api/features.html

https://diffing.quarkslab.com/qbindiff/doc/source/api/features.html


zlib unrar curl clamav nmap openssl

BinExport 0.73 2.52 5.04 8.89 9.03 2.41

Sqlite 73 223 450 523 968 496

Quokka 0.71 2.19 4.21 8.37 7.93 2.10

TABLE II: Averaged exporting time (s) depending on the
exporter for each project of Dataset-1A.

• Increasing parameter sratio does not imply a significant
performance decrease. Indeed, for small projects, such
as zlib or unrar, we notice a slow f1-score loss.
For bigger projects, such as curl, it may help to con-
verge: indeed, decimating the similarity matrix reduces
the number of unlikely candidate matches the differ has
to consider, resulting in clear improvement. Choosing a
value too high ends up erasing the similarity matrix and
matches becomes not possible anymore. We conclude
that, for large projects, it may be helpful to choose a
middle value (like 0.6) for a better convergence, smaller
memory usage and faster computation time.

Each project has its own best parameter set denoted ppb:
indeed, zlib gives the best performance with a Haussmann
distance, ϵ = 0.7 (even though the difference with other ϵ
values strictly above 0.0 is negligible), α = 0.8 and sratio = 0.
Moreover, from the best parameters set for all these projects,
we can obtain the best averaged parameter set, called avb:
Haussmann distance, ϵ = 0.9, α = 0.8, sratio = 0.6. We
finally end up with different parameters sets: ppb-zlib, ppb-
unrar, ppb-curl, ppb-clamav, ppb-nmap, ppb-openssl and avb,
based on Dataset-1A.

G. Computational resources

Due to its large complexity, diffing may require a lot of
computational resources. We analyze both time and space
complexity of diffing solutions using a dedicated server with
64GB of RAM and 16 CPU cores. First, exporting times are
compared in Table II for BinExport (used by both QBinDiff
and BinDiff), Quokka (used only by QBinDiff) and Diaphora’s
own exporter, that produces a sqlite database. It is worth
mentioning that QBinDiff is not attached to a single exporter
but can be used with either Quokka or BinExport. Notice
that Quokka is slightly faster than BinExport, whereas the
Diaphora sqlite database implies a significant computational
overhead. Second, the proper diffing tends to be costly, both in
terms of memory usage and computation time. Peak memory
usage and computation times can be found in Table III. We
especially observe the QBinDiff sparsity effect on diffing. No-
tice that a low sratio may be more computationally intensive
than higher ratios (leading to an out-of-memory error on large
binaries belonging to the openssl project) and give lower
results due to slower convergence. Contrarily, in some cases,
higher ratios help to converge faster and obtain better results,
with openssl scores that are higher than nmap ones for
example.

clamav nmap openssl

Time RAM Time RAM Time RAM
BinDiff 110 298 69 834 56 388
Diaphora3 151 29 651 30 265 30

QBinDiff

s = 0 672 823 8675 8339 - -
s = 0.1 689 801 8702 8329 - -
s = 0.2 684 712 7424 7167 - -
s = 0.3 639 617 6712 6171 3844 4884
s = 0.4 656 523 4933 5071 3784 4022
s = 0.5 541 430 4549 3902 2279 3121
s = 0.6 516 347 3146 2900 1509 2301
s = 0.7 489 272 2188 2009 1060 1569
s = 0.8 461 204 1725 1294 1135 999
s = 0.9 447 153 1205 762 528 535
s = 0.99 440 134 880 673 398 408

TABLE III: Required time (s) and memory peaks (MB) needed
on the three largest projects for different differs. - means the
computation was stopped due to an out-of-memory error.

ppb-zlib ppb-unrar ppb-curl ppb-clamav ppb-nmap ppb-openssl

zlib 0.83 0.84 0.82 0.84 0.83 0.81
unrar 0.80 0.82 0.81 0.83 0.81 0.78
curl 0.70 0.84 0.83 0.81 0.83 0.80

clamav 0.83 0.77 0.83 0.83 0.82 0.81
nmap - - 0.76 - 0.76 0.73

openssl - - - - 0.75 0.74

TABLE IV: Cross-validation results

IV. DIFFER’S EMPIRICAL COMPARISON

This Section is dedicated to establishing a comparison
between existing binary diffing solutions and QBinDiff. We
select BinDiff [5], [7] and Diaphora [14] as they are the most
widely used binary differs in reverse-engineering. We also
consider GMN, a state-of-the-art binary similarity tool [17],
[18], Asm2vec [3], PalmTree [16] and JTrans [30]. Our goal
is to show that the QBinDiff capability of arbitrating between
CG and similarity with well-chosen features can compete and
even outperform standard differs.

A. Experimental setting

The experimental settings are almost identical to the ones
used in Section III-B. Because the ablation study was per-
formed on Dataset-1A, we consider Dataset-1B in this exper-
iment. Notice again there are no binaries in common between
the two datasets. Dataset-1B contains 770,544 functions dis-
tributed in 474 binaries, compiled with either clang or gcc,
for various versions and optimization levels.

The best different parameter sets specific for each project
and the best averaged parameter set were previously found in
Section III-E. Ideally, we would like to re-use them in this
experiment on Dataset-1B. However, data leakage is a usual
issue when using parameters from one data set to another.
However, the performed parameter search is different from
hyperparameter search that can be applied on DL models, as
there is no learning in the QBinDiff algorithm, which means
no overfitting can occur. QBinDiff is before all an optimization
algorithm relying on Belief Propagation, which is a statistical
ML algorithm.

To demonstrate it, we perform a cross-validation on param-
eter sets: for each project p, we use its best corresponding



BinDiff Diaphora3 QBinDiff-ppb
(BinExport)

QBinDiff-ppb
(Quokka)

QBinDiff-avb
(BinExport)

QBinDiff-avb
(Quokka)

GMN Asm2vec PalmTree JTrans

zlib libz.so.1.2.11 0.85 0.65 0.84 0.89 0.82 0.88 0.71 0.19 0.67 0.69

openssl
libssl.so.3 0.81 0.64 0.85 0.85 0.83 0.86 0.56 0.17 0.63 0.67
openssl 0.95 0.68 0.96 0.98 0.92 0.98 0.59 0.54 0.76 0.72
libcrypto.so.3 0.76 0.78 0.63 0.80 0.67 0.82 0.58 0.01 0.55 0.46

nmap
nping 0.59 0.52 0.74 0.77 0.73 0.77 0.17 0.17 0.41 0.52
ncat 0.73 0.58 0.86 0.92 0.86 0.92 0.24 0.17 0.56 0.67
nmap 0.8 0.8 0.73 0.82 0.73 0.82 0.66 0.10 0.61 0.43

clamav libclamav 0.58 0.46 0.77 0.81 0.76 0.81 0.43 0.10 0.51 0.53

curl 0.65 0.56 0.83 0.88 0.83 0.88 0.24 0.22 0.50 0.57

unrar 0.68 0.62 0.82 0.88 0.81 0.87 0.22 0.14 0.57 0.69

Averaged 0.74 0.63 0.80 0.86 0.80 0.86 0.44 0.18 0.58 0.60

TABLE V: f1-scores for different binaries and differs. ppb stands for per project best and avb for averaged best.

parameter set ppb computed on Dataset-1A to perform diffing
on Dataset-1B. For example, we use ppb-zlib to perform
diffing on other binaries from Dataset-1B. Cross-validation
results are available in Table IV, with no significant f1-score
differences, meaning there is not artificial inflated f1-score, a
phenomenon that could happen with data leakage.

Diaphora results were obtained with its latest version,
without any decompiler features. GMN was trained with the
default hyperparameters of the available source code and
graph attributes (Bag-of-Words over the assembly instruction
mnemonics) [18]. Because we cannot train GMN on Dataset-
1B as it is used for testing, we train GMN using Dataset-
1A. Once the embeddings are obtained, we compute matches
using the Hungarian Algorithm [15]. The same principle is
applied to train Asm2vec [3], except the number of random
walks is set to 3. PalmTree [16] and JTrans [30] are used
with their default parameters. QBinDiff is tested with the two
available binary exporters, BinExport [9] and Quokka [2] to
see which exporter performs the best. QBinDiff is using all the
available features at this date, and we test the two parameter
sets found on Dataset-1A, as explained in Section III-E: the
best parameter set per project, denoted as ppb and the best
averaged parameter set denoted as avb.

B. Results

F1-score results using main standard binaries are displayed
in Table V. Several aspects can be highlighted:

• Using QBinDiff with Quokka is much more efficient than
using QBinDiff with BinExport, with a f1-score differ-
ence of 0.17 for libcrypto with ppb. This advocates
for an increased use of Quokka. Such results can be
explained by the fact Quokka exports more information
(such as specific cross-references) that BinExport does
not.9

• Diaphora exhibits lower f1-score results, compared to
BinDiff and QBinDiff, because it tends to privilege
precision over recall.

9See https://blog.quarkslab.com/quokka-a-fast-and-accurate-binary-exporter.
htmlformoredetails.

• Binary similarity tools show lower scores than standard
differs. This can be explained by the fact that HA
cannot output a correct mapping if the similarity scores,
equivalent to cost, lie in the same range of values with
very little standard deviation, which is the case for these
trained models. However, PalmTree and JTrans almost
compete with Diaphora, with their enriched representa-
tions, compared to Asm2vec or GMN.

• There is very little difference in terms of f1-score between
results obtained when using ppb or avb. This means that
a QBinDiff user does not have to do the hyperparameter
search done in Section III-E, and can simply take the best
averaged parameters found earlier to diff its own binaries.
Notice that for the libss.so.3 and
libcrypto.so.3 binaries, ppb configuration leads
to lower results than the avb one. Intuitively, it should
not be the case. In fact, if we had performed a complete
parameter search over all the parameters d, α, ϵ, sratio,
ppb should always produce better results. However, we
simply start from a default parameter set, denoted, ps and
make one parameter change at the time. Consequently,
ppb reflects the best parameter set for each parameter
dimension given a default parameter set. Then, it is
possible that avb outputs slightly better results than ppb.

We conclude that QBinDiff using BinExport and even better
Quokka, significantly outperforms the other differs and has a
f1-score of 12 points better than BinDiff.

V. DISCUSSIONS

A. Limitations

Initially, we assumed that disassemblies generated by tools
like IDA-Pro or Ghidra are accurate. However, these tools
may encounter challenges in producing correct disassemblies,
especially when faced with techniques like obfuscation or
unusual compiler optimizations. Overall, all tools are affected
by the limitation of relying solely on disassemblies.

Secondly, these diffing experiments only address one-to-
one matching, which may not be adequate for obfuscated
or optimized functions where a one-to-many approach would
be more appropriate. This issue is quite intricate, and only

https://blog.quarkslab.com/quokka-a-fast-and-accurate-binary-exporter.html for more details.
https://blog.quarkslab.com/quokka-a-fast-and-accurate-binary-exporter.html for more details.


a few solutions have been proposed by researchers, with
the effectiveness of these solutions are yet to be definitively
established [14].

Third, binaries compiled in -O1 up to -Os apply several
optimizations, in particular inlining, which may impact the
diffing evaluation as several functions are missing. Studying
inlining impact on binary diffing is still an unexplored research
area and only few research papers starts to focus it [11], [12].

B. Future work

Extending such a comparison study with cross-architecture
binaries seems to be a natural step for binary diffing analysis.

Similarly, adding more binary differs such as SAFE can help
to further analyze why binary similarity tools output lower
scores compared to binary differs.

VI. CONCLUSION

In this work, we presented QBinDiff and its core algorithm.
We performed an ablation study on its parameters and features
and detailed how each of them influences the diffing results.
Using the best average parameters, we established a compari-
son between standard differs and similarity-based diffing and
showed that QBinDiff significantly outperforms other differs,
especially when the Quokka exporter is used.

REFERENCES

[1] Gianluca Capozzi, Daniele Cono D’Elia, Giuseppe Antonio Di Luna,
and Leonardo Querzoni. Adversarial attacks against binary similarity
systems. arXiv preprint arXiv:2303.11143, 2023.

[2] Alexis Challande, Robin David, and Guënaël Renault. Quokka: A
fast and accurate binary exporter. In GreHack 2022-10th International
Symposium on Research in Grey-Hat Hacking, 2022.

[3] Steven HH Ding, Benjamin CM Fung, and Philippe Charland. Asm2vec:
Boosting static representation robustness for binary clone search against
code obfuscation and compiler optimization. In 2019 IEEE Symposium
on Security and Privacy (SP). IEEE, 2019.

[4] Yue Duan, Xuezixiang Li, Jinghan Wang, and Heng Yin. Deepbindiff:
Learning program-wide code representations for binary diffing. In
Network and distributed system security symposium, 2020.

[5] Thomas Dullien and Rolf Rolles. Graph-based comparison of executable
objects (english version). Sstic, 5(1):3, 2005.

[6] Frank Emmert-Streib, Matthias Dehmer, and Yongtang Shi. Fifty
years of graph matching, network alignment and network comparison.
Information sciences, 346:180–197, 2016.

[7] Halvar Flake. Structural comparison of executable objects. DIMVA
2004, July 6-7, Dortmund, Germany, 2004.

[8] Hao Gao, Tong Zhang, Songqiang Chen, Lina Wang, and Fajiang
Yu. Fusion: Measuring binary function similarity with code-specific
embedding and order-sensitive gnn. Symmetry, 2022.

[9] Google. Binexport. https://github.com/google/binexport, 2016. Ac-
cessed: 2023-08-21.

[10] W Keith Hastings. Monte carlo sampling methods using markov chains
and their applications. 1970.

[11] Ang Jia, Ming Fan, Wuxia Jin, Xi Xu, Zhaohui Zhou, Qiyi Tang, Sen
Nie, Shi Wu, and Ting Liu. 1-to-1 or 1-to-n? investigating the effect of
function inlining on binary similarity analysis, 2022.

[12] Ang Jia, Ming Fan, Xi Xu, Wuxia Jin, Haijun Wang, and Ting Liu.
Cross-inlining binary function similarity detection, 2024.

[13] Dongkwan Kim, Eunsoo Kim, Sang Kil Cha, Sooel Son, and Yongdae
Kim. Revisiting binary code similarity analysis using interpretable
feature engineering and lessons learned. IEEE Transactions on Software
Engineering, 49(4):1661–1682, 2022.

[14] Joxean Koret. Diaphora. https://github.com/joxeankoret/diaphora, 2015.
Accessed: 2023-08.

[15] Harold W Kuhn. The hungarian method for the assignment problem.
Naval research logistics quarterly, 2(1-2):83–97, 1955.

[16] Xuezixiang Li, Yu Qu, and Heng Yin. Palmtree: learning an assembly
language model for instruction embedding. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security,
pages 3236–3251, 2021.

[17] Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet
Kohli. Graph matching networks for learning the similarity of graph
structured objects. In International conference on machine learning,
pages 3835–3845. PMLR, 2019.

[18] Andrea Marcelli, Mariano Graziano, Xabier Ugarte-Pedrero, Yanick
Fratantonio, Mohamad Mansouri, and Davide Balzarotti. How machine
learning is solving the binary function similarity problem. In 31st
USENIX Security Symposium (USENIX Security 22), 2022.

[19] Luca Massarelli, Giuseppe A Di Luna, Fabio Petroni, Leonardo Quer-
zoni, Roberto Baldoni, et al. Investigating graph embedding neural
networks with unsupervised features extraction for binary analysis. In
Proceedings of the 2nd Workshop on Binary Analysis Research (BAR),
pages 1–11, 2019.

[20] Xiaozhu Meng and Barton P Miller. Binary code is not easy. In
Proceedings of the 25th International Symposium on Software Testing
and Analysis, pages 24–35, 2016.

[21] Elie Mengin. Binary Diffing as a Network Alignment Problem. PhD
thesis, Universite Paris 1-Pantheon Sorbonne, 2021.

[22] Elie Mengin and Fabrice Rossi. Binary diffing as a network alignment
problem via belief propagation. In 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 967–978.
IEEE, 2021.

[23] Elie Mengin and Fabrice Rossi. Improved algorithm for the network
alignment problem with application to binary diffing. Procedia Com-
puter Science, 192:961–970, 2021.

[24] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

[25] Jiang Ming, Dongpeng Xu, and Dinghao Wu. Memoized semantics-
based binary diffing with application to malware lineage inference. In
Hannes Federrath and Dieter Gollmann, editors, ICT Systems Security
and Privacy Protection, pages 416–430, Cham, 2015. Springer Interna-
tional Publishing.

[26] Kexin Pei, Zhou Xuan, Junfeng Yang, Suman Jana, and Baishakhi
Ray. Trex: Learning execution semantics from micro-traces for binary
similarity. arXiv preprint arXiv:2012.08680, 2020.

[27] Quarkslab. Qbindiff - github. https://diffing.quarkslab.com/qbindiff/doc/
source/features.html#id1, 2023. Accessed: 2023-09-7.

[28] Paria Shirani, Lingyu Wang, and Mourad Debbabi. Binshape: Scalable
and robust binary library function identification using function shape. In
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, pages 301–324. Springer, 2017.

[29] Sami Ullah and Heekuck Oh. Bindiff nn: Learning distributed represen-
tation of assembly for robust binary diffing against semantic differences.
IEEE Transactions on Software Engineering, 48(9):3442–3466, 2021.

[30] Hao Wang, Wenjie Qu, Gilad Katz, Wenyu Zhu, Zeyu Gao, Han Qiu,
Jianwei Zhuge, and Chao Zhang. Jtrans: Jump-aware transformer for
binary code similarity detection. In Proceedings of the 31st ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2022, page 1–13, New York, NY, USA, 2022. Association for
Computing Machinery.

[31] Lei Zhao, Yuncong Zhu, Jiang Ming, Yichen Zhang, Haotian Zhang,
and Heng Yin. Patchscope: Memory object centric patch diffing. In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, pages 149–165, 2020.

https://github.com/google/binexport
https://github.com/joxeankoret/diaphora
https://diffing.quarkslab.com/qbindiff/doc/source/features.html#id1
https://diffing.quarkslab.com/qbindiff/doc/source/features.html#id1

	Introduction
	Binary analysis
	QBinDiff: a modular differ
	QBinDiff
	Ablation : experimental settings
	Anchoring
	Similarity and CG topology impact
	Best parameter search
	Features impact
	Computational resources

	Differ's empirical comparison
	Experimental setting
	Results

	Discussions
	Limitations
	Future work

	Conclusion
	References

