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Graph Representation and Feature Selection using
Sparse Coding and Dictionary Learning.

Application to clustering in Cybersecurity.
Barbara Pilastre, Tristan Bitard-Feildel

Abstract—In recent year, graph signal processing have received
an increasing interest in many fields and cybersecurity has not
escaped to this trend as complex cybersecurity data can often
be depicted as graph. This paper introduces GABAIN (Graph
leArning Based on spArse codINg), a new graph representation
method based on sparse coding. The method takes advantage of
sparse coding to perform similarity search and infers relation-
ships between sample data preserving the local structure of the
data. Additionally, the proposed method includes a dictionary
learning step with feature selection constraint via ℓ2,1 norm
regularization to identify informative features and offer some
explainability and data knowledge. We evaluate the proposed
method for clustering application in cybersecurity use cases and
demonstrate the competitiveness of the proposed method and the
efficiency of its feature selection option.

Index Terms—Similarity Graph Leaning, Sparse Coding, Dic-
tionary Learning, Clustering, Explainability.

I. INTRODUCTION

GRAPH signal processing is an active area of research for
many applications such as anomaly detection, classifica-

tion or pattern recognition [1], [2]. Indeed, representing data as
graph can be very interesting to highlight some useful structure
for processing, analysis and visualization of the data. Formally,
the problem of data representation as graph is the following
: transform a dataset classically represented as matrix data
Y ∈ RN×P with N observations of P variables or features
into a graph composed of nodes connected by edges.

Graph representation appears straightforward in various
application domains where relational data is available [3]. As
example, it is quite classical to represent social media data
as graph in which users are represented as nodes and edges
describe relationships or interactions between them [4], [5].
In the same way in cybersecurity for intrusion detection [6],
system activity data is regularly represented as graph in which
system objects (Process, Thread or Files) are represented as
nodes and edges describe actions between them (creation,
reading, etc.). In other cases, the representation as graph is
not obvious. To address this drawback, numerous approaches,
referred as graph learning (GL), have been designed to infer
relationships between features (i.e., variables of the original
dataset are represented as nodes in the learned graph). They
are commonly based on statistical or physical motivated mod-
els and are useful for applications such as image encoding
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and compression applications or brain signal analysis [7]. In
contrast, clustering or outlier detection applications often infer
relationships between observations by exploiting data similar-
ity. Resulting graph, called similarity graph, is a directed and
weighted graph in which each node corresponds to a sample or
observation of the original dataset, and weighted edges connect
similar samples. For clustering task, for instance, the similarity
graph learning (SGL) strategy as data preproccessing step can
be interesting since the clustering can be performed on the
learned graph using efficient graph clustering or community
detection methods that not require the number of cluster to be
provided a priory. This paper introduces a new SGL method
based on sparse coding. The proposed method, inspired by the
works conducted in [8], [9], takes advantage of sparse coding
to detect similar data and capture the local structure of the
data.

Furthermore, explanability and data knowledge are impor-
tant issues in many field, especially in cybersecurity. Indeed,
cybersecurity analyst require to be provided with explana-
tions about system alerts or events that occurred to make
decisions fixing problems and preserving system performance
and functionality. Thus, although automatic processing can
be very helpful, especially to deal with large amounts of
data, it is important to make available model explanability to
understand how processing end result is reached and improve
data knowledge. To this end, a good strategy is to identify
informative features using feature selection techniques based
on sparse coding and dictionary learning [10], [11]. Aware
of this, we augmented the GABAIN method with a selection
feature option using dictionary learning step via a ℓ2,1 norm
regularization. Finally, the interest of the GABAIN method is
twofold : the similarity graph learning to represent original
matrix data as graph on one hand, and feature selection on
the other.

To sum-up, the main contributions of this paper are:

• A similarity graph learning preserving the local structure
of the data based on sparse coding.

• A feature selection using dictionary learning.
• An evaluation of the proposed method on clustering

problems in cybersecurity applications and a comparison
to the state-of-the-art approaches.

The paper is organized as follows. Similarity graph learning
methods and feature selection approaches are reviewed in
section 2. Section 3 details the proposed method and its
optimization. Experimental results from clustering problems
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in cybersecurity domain are compared to the state-of-the art
in section 4. Finally, conclusion and future works are given in
section 5.

II. RELATED WORKS

A. graph learning from data

Graph data representation is often very interesting since the
obtained data structure can improve processing, analysis and
visualization of the data. A generalized graph representation
method can represent a real challenge given the variety of
application domains. We distinguish two main strategies to
infer graph from data : graph learning (GL) [7], which infer
relationships between features, and similarity graph learning
(SGL) [12], which infer relationships between data samples.
This paper focus on SGL in order to investigate solutions for
clustering applications. As a results of SGL, each rows of
the original data matrix Y ∈ RN×P , is defined in the node
set of the estimated graph. Node connections by weighted
edges are given using a similarity function or distance metric.
Simple SGL methods build fully connected graph. The idea
is to use similarity function to compute similarity matrix and
infer a fully connected graph with weighted edges. Weights
correspond to the similarity measure of each pair of nodes.
The Gaussian kernel is one of the most used similarity function
[13] since it allows complex and non-linear relationships to be
captured and local structure of the data to be preserved. As
demonstrated in [14] for clustering application, the Laplacian
kernel can be interesting. Popular SGL methods are based
on nearest neighbors approaches. A nearest-neighbor graph
(NNG) [15] is a sparse graph in which nodes are connected
to its nearest neighbor, i.e., to the data sample of Y whose
similarity from it is maximum among all the given points
other than itself. An extension to the NNG is the k-NNG [16]
in which each node is connected to its k nearest neighbors,
meaning the k samples whose similarity is in the top-k highest
similarity from it. In the recent years, many variants of the K-
NNG have been proposed. Some of them are devoted to adjust
the k value [17], [18], [19], [20] and other defend the use of
other similarity function, especially the Gaussian similarity
function whose the parameter σ can be better tuned [21],
[22], [23]. Other well used SGL methods are sparse subspace
similarity graph building methods. These methods assume that
the data points close to each other can be expressed in the
data space through the linear combination of them [24]. These
approach based on sparse coding define an objective function
to exploit self-expressiveness of the data and develop strategies
to preserve local and global structure of the data [25] or to
make the sparse representation more discriminative [26].

B. Feature selection

Feature selection is one of the two main dimensionality
reduction strategies used to reduce the number of features
in a dataset. There are multiple benefit attached to reduction
dimension since it can solve problems of data sparsity in
high dimension (curse of dimensionality) [27], scalability or
explainability. As mentioned, dimensionality reduction meth-
ods can be divided into two categories: feature extraction

(FE) and feature selection (FS) [10], [11]. FE is to find
a new lower-dimensional space than the original space and
project the original data in such new space. The new data
are described by features of the new space estimated by
linear or non-linear transformation. These techniques obtained
promising results on real-world data, especially the non-linear
transformation strategies[28], but they raise difficult questions
about results interpretation since features of the new space,
computed from a mathematical optimization problem, are no
longer interpretable. Conversely, FS methods aims to identify
and select relevant features in the original space and eliminate
less informative ones. As original data have commonly be
extracted from operational process or physical measurements,
FS ensures an easier understanding and interpretation of the
results. FS approaches, which are, for the main part, based on
sparse coding are studied in this paper.

Traditional unsupervised FS algorithms aim to remove re-
dundant or irrelevant features from the dataset. The selected
features should preserve the overall data structure and prop-
erties and are more discriminatory with respect to a given
criteria than the removed features. Most FS algorithms can
be categorized into sparse coding or dictionary learning ap-
proaches. Each method formulates an objective function as an
optimization problem including a ℓ2,1-norm regularization on
which the FS is based. The approaches based on sparse coding
select features by estimating a FS matrix which is sparse in
rows. It is the case of UDF [29] which proposes a linear
classifier based on sparse coding to exploit discriminatory
information of the data. NDFS [30] extends UDF [29] by
adding spectral clustering to exploit better these information.
Regularized models are also proposed to preserve structure
of the data. JELSR [31] takes advantage of spectral regres-
sion and Laplacian matrix to preserve manifold of the data.
SRFS [32] preserves the local structure of features by sparse
regression and the global structure among samples and among
features using a low-rank constraint. LDSSL [33] adopts a
twofold strategy and proposes a sparse representation as linear
model that preserves both the local informative structure and
local geometric structure of the data.

The methods based on dictionary learning approaches try to
learn a basis matrix with feature selection and provide a new
data representation along with the elimination of uninformative
or redundant features. The DLUFS [34] method uses a dictio-
nary learning approach with a low-rank constraint to obtain a
sparse representation of the data and eliminate uninformative
and redundant features. In CDLFS [35], dictionary learning
aims to select the features that can well preserve the data distri-
bution. According to recent results, the DLUFS [34] solution is
FS state-of-the-art. Unfortunately, the actual implementation of
the DLUFS method is not scalable and could not be applied to
the data of these experiments that can count hundreds samples.

III. THE GABAIN ALGORITHM

A. Notations

We summarize notations used in this paper in Table I.
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TABLE I: Used notations.

λ scalars
v vector v
vi the ith element of v
M matrix M
MT the transpose of M
M−1 the inverse of M
M(i, j) the element in the ith row and jth column of M
∥v∥1 the l1-norm of v, i.e., ∥v∥1 =

∑
i |vi|

∥M∥1,1 the l1,1-norm of M, i.e., ∥M∥1,1 =
∑

j ∥M(: j)∥1
∥M∥2,1 the l2,1-norm of M, i.e., ∥M∥2,1 =

∑
i

√∑
j M(i, j)2

∥M∥F the Frobenius norm of M, i.e., ∥M∥F =
√∑

i,j M(i, j)2

B. Sparse Representation & Feature Selection

The main idea of the proposed sparse coding based graph
data representation is to express each of the N data samples
of the data matrix Y ∈ RN×P as a sparse linear combination
of the rest of the dataset. More precisely, we consider the
transpose matrix of Y , denoted as Y T and a data-driven
dictionary D ∈ RP×L (L < N ) corresponding to a subset
of Y T since D is composed of L atoms (i.e., columns)
drawn randomly from the data Y T . This dictionary exploits
the self-expressiveness of the data to represent data samples
by the others. Using a sparsity constraint via a ℓ1 norm
regularization, the number of samples used in the represen-
tation is limited in order to promote similarity search. The
highest coefficients of the resulting sparse representation allow
pairs of similar data to be detected and edges of the graph
to be identified. Furthermore, in order to identify the more
relevant features, the GABAIN algorithm includes an optional
dictionary learning step. The idea is to divide the dictionary D
into two dictionaries, D1 ∈ RP×L and D2 ∈ RP×L, sparse
in rows such as D = D1 + D2. This dictionary step aims
to identify and distinguish informative features which will
compose dictionary D1 from uninformative features which
will compose dictionary D2. This dictionary learning step is
performed via a suitable ℓ2,1 norm regularization. Finally, The
proposed strategy decomposed the data as follows:

Y T = D1X1 +D2X2 +B (1)

where X1 ∈ RL×N is the sparse coefficient matrix cor-
responding to the representation of the data matrix Y in the
space of the dictionary D1, X2 ∈ RL×N is the coefficient
matrix corresponding to the representation of the data matrix
Y in the space of the dictionary D2 and B ∈ RP×N is an
additive noise.

Thus, the GABAIN algorithm is to solve the following
problem:

X̂1, X̂2, D̂1, D̂2 = arg min
X1,X2,D1,D2

∥Y T −D1X1 −D2X2∥2F
(2)

+ λ∥X1∥1,1 + β∥D2X2∥2,1
s.t. D = D1 +D2.

where λ and β are regularization parameters that control
respectively the level of sparsity of X1 and D2X2. The
greater the value of λ the less the number of non-zero value

in X1 and the greater the value of β the less the number of
non-zero rows in D2X2 (i.e., the more the number of selected
features).

This strategy is inspired by similar successful works con-
ducted on anomaly detection [8], [9]. Note that the model
integrates two constraints via ℓ1 and ℓ2,1 norm regularizations
: one for each objective. The ℓ1 regularization limits the
number of dictionary atoms (i.e., the number of samples). The
selected samples in the sparse representation can be used for
the graph construction by creating edges connecting the similar
samples. The ℓ2,1 norm regularization limits the number of
available rows in D2, i.e., the number of features of the
dataset that can be used to estimate D2X2 which can be
seen as the residual of the sparse representation. Through
this game of constraints, the features distribution between
the two dictionaries D1 and D2 is mechanically conducted.
Indeed, since the ℓ1 norm constraints the X1 estimation and no
constraint affect the estimation of X2, the informative features
will be automatically selected in D1 whereas uninformative
features will be selected in D2. Details about problem 2
iterative optimization and update equations of the different
variables at the kth iteration are provided in the next section.

C. Optimization

By adding the variable E, the problem (2) can reformulated
as follow :

X̂1, X̂2, D̂1, D̂2, Ê = arg min
X1,X2,D1,D2

∥Y T −D1X1 −E∥2F
(3)

+ λ∥X1∥1,1 + β∥E∥2,1
s.t. D = D1 +D2, E = D2X2.

and corresponds to an extension of [36]. the problem (3) can
be solved by the Alternative Direction Method of Multipliers
(ADMM) [37] by adding the auxiliary variable Z :

X̂1, X̂2, D̂1, D̂2, Ê, Ẑ = arg min
X1,X2,D1,D2

∥Y T −D1X1 −E∥2F
(4)

+ λ∥Z∥1,1 + β∥E∥2,1
s.t. D = D1 +D2, E = D2X2, Z = X1.

(5)

and the constraint Z = X1. Note that, contrary to Problem
(3), the first and second terms of (4) are decoupled, which
allows an easier estimation of the matrix X1. However, this
problem is not convex in all variables to estimate, but it is
convex in each variable by fixing the others. It can be solved
using the ADMM algorithm by minimizing the following
augmented Lagrangian:

LA(X1,E,Z,M , µ) =
1

2
∥Y T −D1X1 −E∥2F (6)

+ λ∥Z∥1,1 + β∥E∥2,1 +M(Z −X1) +
µ

2
∥Z −X1∥2F

The update of each variable at the kth iteration is detailed
below.
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Updating of X1. X1 is update by minimizing the following
problem:

Xk+1
1 = argmin

X1

∥Y T −Dk
1X1 −Ek∥2F (7)

+Mk(Zk −X1) +
µk

2
∥Zk −X1∥2F

Simple algebra leads to:

Xk+1
1 = (Dk

1

T
Dk

1 + µkI)−1(Dk
1

T
Rk +Mk + µkZk) (8)

where Rk = Y −Ek.

Updating of Z. The update equation of Z is obtained from:

Zk+1 = argmin
Z

λ∥Z∥1,1 +Mk(Z −Xk+1
1 ) (9)

+
µk

2
∥Z −Xk+1

1 ∥2F

Which can be simplified to:

Zk+1 = argmin
Z

1

2
∥P −Z∥2F + γ∥Z∥1,1 (10)

where P = Xk+1
1 − 1

µkM
k and γ = λ

µk . The solution to
this problem is given by the soft-threshodling operator:

Zk+1 = Sλ(P ) (11)

with Sλ(a) =

 a− λ if a > λ
0 if |a| ≤ λ
a+ λ if a < λ

Updating of E. E is updated by solving the following
problem:

Ek+1 = argmin
E

1

2
∥Y T −Dk

1X
k+1
1 −E∥2F + β∥E∥2,1

(12)

which results in:

Ek+1(i, :) =

{
∥Q(i,:)∥2−β
∥Q(i,:)∥2

if ∥Q(i, :)∥2 > β

0 otherwise
(13)

where Q = Y T −Dk
1X

k+1
1 and Q(i, :) is the ith row of

Q.

Simple algebra allows the variables X2,D2 to be inferred
from X1,Z and E to respect constraints (5).

Updating of D2. The update of D2, using the updated
matrix E, is:

Dk+1
2 (i, j) = Dk+1

E =

{
D(i, j) if Ek+1(i, j) > 0
0 otherwise

(14)

Updating of D1. According to the constraint D = D1 +
D2, the update of D2 is given by:

Dk+1
1 = D −Dk+1

2 (15)

Updating of X2. According to the constraint E = D2X2,
the update of X2 is given by:

Xk+1
2 = Dk+1

2 [Ek+1]−1 (16)

The main stages of the ADMM-based algorithm are de-
scribed above to solve (4)(5) and summarized in Algorithm 1.
Theoretical convergence properties of the ADMM algorithm
are details in [38].

Algorithm 1 GABAIN ADDM-Based algorithm

Input: the transpose of the matrix of data Y T ∈ RP×N ,
the dictionary D ∈ RP×L, the scalars β and ϵ, ρ = 1.1.
Initialization: k = 0, Z0, E0, M0, D0

1, D0
2, X0

2, µ0.
Repeat:

1) Xk+1
1 = argminX1 LA(X1,Z

k,Ek,Mk, µk)
2) Zk+1 = argminZ LA(X

k+1
1 ,Z,Ek,Mk, µk)

3) Ek+1 = argminE LA(X
k+1
1 ,Zk+1,E,Mk, µk)

4) Mk+1 = Mk + µk(Zk+1 −Xk+1
1 )

5) µk+1 = ρµk

6) Dk+1
2 = Dk+1

E

7) Dk+1
1 = D −Dk+1

2

8) k = k + 1

Until: ∥Zk−Xk
1∥

2
F

∥Xk
1∥2

F

< ϵ

Output: Xk
1

D. Illustrative example

This section details the GABAIN algorithm for clustering
application through a simple example shown in Figure 2. As a
reminder, The GABAIN algorithm aims to represent any data
matrix as graph data preserving local structure of the data. In
addition it includes a FS option to offer data knowledge and
explainability. In the example of Figure 2, we consider a the
transpose of a data matrix noted Y T ∈ R6×6. The first step
of the GABAIN algorithm is to draw dictionaries by splitting
the matrix Y T into smaller dictionaries. In figure 2, two
dictionaries are composed of three atoms each : samples 2, 6
and 1 compose columns of the first dictionary D1

1, and samples
3, 4, 5 compose columns of the second dictionary D2

1. The
second step of the GABAIN algorithm is to apply the ADMM-
based algorithm to each dictionary. In our example of figure
2, results reveal that features A,B and E have been selected
when the ADMM-based algorithm have been performed on the
dictionary D1

1, and features A,B and D have been selected
when the ADMM-based algorithm has been performed on
the dictionary D2

1. In the third step, the graph connections
or edges are deducted from the estimation of X1

1 and X2
1

obtained in step 2. Indeed, we assume that the highest values
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Fig. 2: GABAIN Algorithm

of sparse representation of each sample (i.e., highest values of
each column of X1

1 and X2
1) highlight similarities which are

extracted to connect corresponding nodes by weighted edges
and build the graph as illustrated in figure 2. Note that self-
loop, i.e., edges that connect a node to itself, are not included
in the graph since they are not informative. Note that for each
dictionary, N edges are identified, one per node. The dictio-
nary split allows more edges to be identified. Furthermore,
since the ADMM-based implies matrix inversion, the use of
smaller dictionaries allows an easier estimation. The number
of edges per node to select is an hyperparameter fix by user. In
our example, two dictionaries are drawn but only one edge per
node is selected : edges with the highest weight. In addition,
to promote stochasticity, the GABAIN algorithm can be apply
several times, denoted as epoch. Thus, more dictionaries are
drawn and more interesting similarities can be identified.

IV. EXPERIMENTS

A. Datasets

In these experiments, two cybersecurity use cases are stud-
ied. The first one is about facial expression recognition in the
images of the popular Yale face database. The second use case
is about android malware categorization. The corresponding
dataset, called APK, has been built from open-source Virus-
Total analysis reports of hundreds Android applications. The
main specifications of the two datasets are reported in Table II.

Algorithm 2 GABAIN Algorithm for clustering applications

Input: the transpose of the matrix data Y T ∈ RP×N , the
scalars β, number of edges C and size of dictionaries L

1) Draw dictionaries by splitting Y T into N
L random

dictionaries composed of L atoms each.
2) Repeat Algorithm 1 for each dictionaries and construct

graphs.
3) Merge graphs returned by ADMM executions.
4) Select C edges per nodes.
5) Apply graph clustering algorithm.

Output: Labels of clusters, selected features

TABLE II: Characteristics of datasets.

Dataset Samples Features Classes Category

Yale 165 1024 15 Image
APK 934 47 5 Android Application

B. Compared methods

The GABAIN algorithm has been evaluated for clustering
in two cybersecurity use-cases. Combined to Louvain commu-
nity detection method [39], the GABAIN approach has been
compared to three state-of-the-art similarity graph learning
methods : k-NNG, RBF similarity graph, Laplacian similarity
graph. In the same way as for GABAIN, this similarity graph
learning have been combined to Louvain community detection
to perform clustering. In addition, popular clustering methods
have been applied, such as the K-means algorithm since its the
most used clustering approach, and two clustering techniques
which have the benefit of not requiring the number of clusters
provided a priory, namely HDBSCAN [40] and OPTICS [41].
As mentioned before, the DLUFS [34] feature selection state-
of-the-art solution is not evaluated in this work since the actual
implementation is not scalable. The different methods are all
described in the following:

• K-NNG : Graph similarity method which connect each
node to its k nearest neighbors according to the euclidean
distance.

• AKNNG[20] : A variant of K-NNG method that build the
adaptive k-nearest neighbors similarity graph (AKNNG)
by automatically adjusting k for different data points.

• MAKNNG[20] : A robust version of the AKNNG solu-
tion.

• RBF SGL : Graph similarity learning based on RBF
similarity matrix.

• Laplacian SGL Graph similarity learning based on
Laplacian similarity matrix.

• K-means: Centroid-based clustering method that mini-
mizes the average distance between data samples within
clusters.

• HDBSCAN: Hierarchical density-based clustering that
finds core samples of high density and expands clusters
from them.

• OPTICS: Density based clustering method that keeps
cluster hierarchy for a variable neighborhood radius.
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Methods Yale APK
K-means 0.90 ± 0.01 0.90 ± 0.01

HDBSCAN 0.28 ± 0.00 0.84 ± 0.00
OPTICS 0.64 ± 0.00 0.84 ± 0.00

k-NNG + Louvain 0.81 ± 0.01 0.88 ± 0.00
RBF-SGL + Louvain 0.85 ± 0.01 0.90 ± 0.00

Laplacian-SGL + Louvain 0.83 ± 0.00 0.86 ± 0.01
AKNNG + Louvain 0.87 ± 0.00 0.22 ± 0.00

MAKNNG + Louvain 0.90 ± 0.00 0.22 ± 0.00
GABAIN + Louvain 0.93 ± 0.00 0.90 ± 0.00

TABLE III: Clustering Results (Adjusted Rand Score ± std)

C. Evaluation measures

Two common measures used to evaluate clustering methods
are the Adjusted Rand Score (ARS) and the Normalized
Mutual Information (NMI), which can be computed by con-
sidering the clustering results, noted ŷ, and the ground-truth,
noted y. These two metrics are particularly useful since label
correspondence between the clustering prediction and the
ground-truth is not required.

The Adjusted Rand Score (ARS) is a corrected version of
the rand index [42] which measures degree of overlapping
between two partitions. It was introduced to determine whether
two clustering results are similar to each other. The ARS can
be defined as follow:

ARS =
RI − ExpectedRI

max(RI)− ExpectedRI

In the formula, the RI stands for the Rand Index. The ARS is
equal to 0 when samples are assigned into different clusters
and it equals to 1 when the two clusters results are the same.

The second evaluation metric is the NMI which is defined
as:

NMI(y, ŷ) =
2I(y, ŷ)

H(y) +H(ŷ)

where H(.) is the entropy measure and I(y, ŷ) [43] is the
mutual information of y and ŷ. The more the NMI is close
to 1, the better the clustering is.

D. Experimental setting

This section gives details about methods implementation
and use. Graph similarity based on k-NNG or GABAIN
have 20 or fewer edges per nodes since it represent a good
setting for these methods applied on these two datasets. The
HDBSCAN and OPTICS clustering algorithms have been
applied with default values. Regarding the K-means algorithm,
the number k of clusters has been set to the true number of
classes given by the ground-truth (see in Table II). Finally, the
GABAIN algorithm have been applied with the same value of
its hyperparameters for the two datasets : β = 12, L = N

2 ,
C = 20, α = 0.3. The NMI and ARS measures are computed
on 30 times running of each algorithms in two descriptive
statistical quantities, mean and standard deviation (std).

E. Experiment results

This section evaluates the proposed solution applied for
clustering in cybersecurity domain and compares it to state-
of-the-art methods. Comparison results based on ARS and

Methods Yale APK
K-means 0.49 ± 0.2 0.80 ± 0.01

HDBSCAN 0.12 ± 0.00 0.62 ± 0.00
OPTICS 0.45 ± 0.00 0.61 ± 0.00

k-NNG + Louvain 0.36 ± 0.02 0.75 ± 0.03
RBF-SGL + Louvain 0.46 ± 0.04 0.79 ± 0.00

Laplacian-SGL + Louvain 0.43 ± 0.02 0.74 ± 0.01
AKNNG + Louvain 0.48 ± 0.01 0.00 ± 0.00

MAKNNG + Louvain 0.57 ± 0.01 0.00 ± 0.00
GABAIN + Louvain 0.58 ± 0.02 0.75 ± 0.00

TABLE IV: Clustering Results (NMI ± std)

(a) YALE

Fig. 3: Example of GABAIN feature selection. Yale sample
image with selected features marked by red pixels.

NMI are respectively reported in Table III and Table IV.
The best results are marked by bold numbers and second-best
results are marked by underlined numbers. Quantitative results
demonstrate the interest of the SGL strategy combined with
graph clustering, especially the GABAIN solution. Indeed,
SGL approaches combined to Louvain clustering outperforms
the HDBSCAN and OPTICS clustering and are competitive
with the famous K-means clustering bu returning the best
or second-best clustering for the two use-cases. In addition,
note that the K-means method depends on the number of
clusters provided a priory which is not the case of the Louvain
method. Thus, since the SGL allows the use of efficient graph
clustering methods, it seems more suitable in many real-world
applications where the number of cluster is unknown. Beyond
its great clustering performances, the GABAIN algorithm in-
cludes an efficient feature selection option which can represent
an important advantage compared to the state-of-the-art. The
obtained feature selection on the Yale dataset is displayed in
figure 3. In this use-case about face expression recognition, the
GABAIN method selects features (red pixels) corresponding
to relevant face areas such as forehead face or cheekbones on
which some specific wrinkles allow emotions to be detected.
Regarding the APK dataset, the feature selection is not so
visual but is also significant. Indeed, the GABAIN method
applied on the APK dataset returns 22 features identified as
informative, which is less than the half of the number of
features in this dataset. Among the selected features the ones
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relative to the permissions required by the android application
can be found. Note that unexpected permissions required
by android applications often represent an evidence of the
presence of malware. Conversely, features such as the number
of called libraries or the number of files in the application
code source were not selected. This feature selection appeared
as logical results to cybersecurity experts, confirming the
efficiency of the GABAIN feature selection.

V. CONCLUSION

This paper investigates a new similarity graph learning
method based on sparse coding. The proposed GABAIN algo-
rithm identifies similarities between sample data and represent
any matrix of data as a graph preserving the local structure of
the data. In addition, the GABAIN method includes a selection
feature option based on dictionary learning that can offer
some explainability and data knowledge. The approach was
combined to the Louvain community detection and evaluated
for clustering in cybersecurity applications. The experiments
results demonstrate the interest of the GABAIN strategy
combined with community detection for clustering task, es-
pecially if limited knowledge on the data is available and
the number of cluster is unknown. Then, the results showed
the efficiency of its feature selection strategy which returns
relevant features and improves user introspective insight into
its data and facilitate clustering explainability. For future work,
the interest of the GABAIN strategy for other application such
as anomaly detection deserves to be investigated. Then, it
could be interesting to quantify features importance of the
selected features.
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