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Abstract—The increasing sensitivity and widespread adoption
of machine learning models in various applications have led
to a growing need for ‘“machine unlearning” - the process of
removing the influence of specific data used to train a model
without retraining from scratch the model. As machine learning
models handle personal and sensitive data, it is crucial to develop
robust and adaptive unlearning approaches that can defend
against attacks. This paper provides a comprehensive overview
of the latest tools and approaches used in machine unlearn-
ing, focusing on short execution time and good performance.
We present a standardized comparison of different automatic
unlearning methods, highlighting their differences, advantages,
and limitations. Qur work aims to contribute to the development
of more efficient and effective machine unlearning techniques,
addressing the challenges of user privacy, bias removal, and
confusion resolution.

Index Terms—Deep neural networks, Image classification,
Machine Learning, Security, Privacy, Machine Unlearning

I. INTRODUCTION

Machine learning models emerged with the objective of
training a dataset to learn parameters and create relationships
in the data. This process involves feeding the model with a
substantial amount of data, allowing it to recognize patterns
and correlations. Once the algorithm is created, it can be used
to make predictions on some input data. The goal of machine
learning (ML) is to create accurate models that can generalize
well to new data [1]].

In recent years, machine learning models have evolved
significantly, becoming increasingly sensitive and specific in
their capabilities. These models are now commonly used in a
wide variety of applications that involve critical information
about users, tasks, and processes. For example, in sectors such
as biometrics [2] and security in Cyber Physical systems,
such as electric power grid [3], machine learning models
handle personal and/or sensitive data that require careful and
ethical management. With the increase in the sensitivity of
these models and the amount of personal data they process, a
new need has arisen: machine unlearning. Machine unlearning
refers to the process of selectively removing specific data
points from a machine learning model, to effectively “forget”
information.

Moreover, the development of automatic unlearning models
is constantly growing and a common challenge is their defense

against attacks, so many approaches have been proposed to
develop models that are as adaptive and robust as possible.
This has fueled a debate on the feasibility of approximate
unlearning, which would enable models to forget learned
patterns without requiring complete retraining from scratch,
thereby significantly reducing the computational costs. The
adoption of approximate machine unlearning techniques over
exact machine unlearning is justified by their superior effi-
ciency and scalability, as well as their adequacy for numerous
applications. Although exact machine unlearning, which en-
tails manual removal of the information to be forgotten and
retraining from scratch, achievies ideal results, its implemen-
tation is often hindered by high computational costs and time
requirements. In contrast, approximate machine unlearning
offers a more practical and effective solution for mitigating the
influence of unwanted data in a model, particularly in scenarios
where complete removal of the unwanted data’s influence is
not feasible or necessary [4].

In this paper, we will focus on explaining the development
of different automatic approximate unlearning approaches with
the aim of revealing the differences and possible advantages
depending on the tools used to perform the forgetting of the in-
formation used by the model to be forgotten. Our contribution
consists in showing in a standardized way an overview of the
latest tools used in information forgetting in machine learning
models, with a focus on short execution time while maintain-
ing a good performance. Additionally, we seek to evaluate the
robustness of the models through attacks that typically aim
to exploit vulnerabilities, with the goal of maintaining a good
performance. Our paper is structured in 7 sections. Following
this introduction, Section 2 provides insights on business
needs and motivations, Section 3 introduce the theoretical
background, Section 4 describes the methodology, Section 5
establishes the experimental datasettings, Section 6 provides
study results and Section 7 concludes.

II. BUSINESS NEED/MOTIVATIONS

Machine unlearning refers to the process of selectively
removing specific data points from a machine learning model,
effectively “forgetting” information. This ability is crucial in
the defense and security sector, where sensitive data may
need to be purged from models for various reasons such as:



the revocation of classified information [1]], compliance with
data protection regulation [5], mitigation of data poisoning
attacks [6], controlled information disclosure [7], updating
operational intelligence [8]], demilitarization of dual use tech-
nology [9] or compliance with export control regulation [10].
While the concept is promising, there are several gaps and
challenges in the current state of the art: limited efficiency
and scallability [11], insufficient accuracy and integrity [IL1],
confidentiality and security concerns [1], legal and compliance
issues [12], limited versatility and generalization [13]], lack
of theoretical foundations [1]]. Security concerns regarding
unlearned models, particularly the potential retrieval of “for-
gotten” data classes, revolve around the risk that sensitive or
protected information may still be inferred or reconstructed,
even after attempting to remove it [I1]. For these reasons,
a comparative assessment of diverse unlearning techniques
aiming to evaluate their robustness to membership inference
attacks is of paramount importance for applications in the
defense and security sector. Moreover, to justify the use of
unlearning techniques, rather than retraining techniques, the
run-time efficiency of these different approaches needs to be
assessed.

III. BACKGROUND

Machine Unlearning, introduced in 2015 by [14], is an
emerging topic of Machine Learning. The unlearning ap-
proaches can be approximate or exact. For the latter the
resources and time required can be dissuasive. In [7]] and [15]]
, the authors propose a framework for unlearning that relies
on data shading and slicing to reduce the computational
overhead of unlearning. Such approaches ask to create several
sub samples to limit the impact of forgetting an observation.
However, it can still be costly if the amount of information to
forget is high.

Most of the researches in the field tend to design a quick
and efficient way to perform unlearning that approximate as
well as possible a retraining from scratch. [16] propose the
SCRUB method, that see the unlearning problem as a teacher-
student problem. Moreover, they illustrate several tasks of
unlearning, in particular removing bias, resolving confusion
and user privacy. [17] propose a method called Amnesias
Unlearning, where during a training, the model owner keeps a
list of which examples appeared in which batches as well as
the parameter updates from each batch. To remove a sensitive
information, the model owner undoes the parameter updates
coming from the batch. [18] propose a linear filtration for
logit-based classifier.

Recent research on machine unlearning, such as [19] has
identified several key approaches for unlearning requests,
including data removal, feature removal, class removal, task
removal, and stream removal. Among the advanced techniques,
the data remover and class remover are particularly empha-
sized. The data remover technique unlearns specific data points
from the training dataset, crucial for privacy compliance and
error correction. The class remover technique eliminates entire
classes of data, useful for maintaining relevance and ethical

integrity when certain categories are no longer needed or pose
ethical concerns [1]]. Our paper focuses on data removal.
Verification of unlearning performance is a complex topic
(see [20]]). As machine learning models have advanced in com-
plexity, the attacks targeting these models have also evolved,
aiming to undermine both their security and privacy. Two of
the most notable types of attacks are Model Inversion Attacks
and Membership Inference Attacks [[L]. Model Inversion At-
tacks focus on reconstructing sensitive features of the training
data by exploiting correlations with the model’s output, ulti-
mately aiming to recreate the input data, particularly the most
private features [21]]. Membership Inference Attacks [22] are
a method used by adversaries to determine whether a specific
example was part of a model’s training dataset. These attacks
are particularly useful in verifying if a group of data has been
successfully forgotten by a model. If unlearning is effective,
the attacker should not be able to guess whether a data was
forgotten or never used (part of the test dataset). The attack
(e.g. [23])) involves identifying whether a particular datum was
included in the training dataset, often assessed using “average
case” scenarios, where the likelihood that a data point belongs
to the target dataset is compared against the test dataset. Key
metrics such as true positive rate and false positive rate are
crucial in evaluating the effectiveness of these attacks [24].

1V. METHODOLOGY
A. Unlearning task and type of model analyzed

1) Unlearning task: Based on the challenge proposed
by [20], we consider the challenge illustrated by Figure
First, a deep neural classifier, called original model, is trained
on a training dataset. From this original model, we train a
new model, called unlearned model, whose objective consist
in forgetting part of the information while preserving the
performance on the other part of the data. During this second
stage, the training dataset is divided in two datasets:

o The forget dataset, for which the aim is for the unlearned
model to output predictions that are indistinguishable
from the predictions made for the test dataset.

o The retain dataset, for which the aim is for the unlearned
model to obtained on it similar performance as the
original model.

In Figure [I] the test dataset correspond to data never seen
during the training of the original and the unlearned models.

Then, information are extracted from the outputs of the
unlearned model to evaluate if the outputs for data from forget
dataset is closed to the ones of the test dataset.

The evaluation process is explained in Section

2) Model analyzed: a ResNetl8: We consider the model
ResNet18 [25]. It is a deep convolutional neural network used
for image classification. It contains 18 main layers, including
convolutional 2D layers (called Conv2D below), pooling layers
and fully connected layers. 2D convolutions start with a
kernel, which is simply a small matrix of weights. This kernel
“slides” over the 2D input data, performing an elementwise
multiplication with the part of the input it is currently on, and
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FIG. 1: Unlearning challenge addressed in the paper.

then summing up the results into a single output pixel. Pooling
layers provide an approach to down sampling feature maps by
summarizing the presence of features in patches of the feature
map. Moreover, in ResNet18, there are several residual blocks,
each consisting of few convolutional layers. These blocks help
mitigate vanishing gradient problem [26].

B. Unlearning approaches studied

The models presented in this section were approaches
conceived by participants in the NeurIPS 2023 challenge [20],
which considers a realistic scenario in which an age predictor
has been trained on private face images, and, after training,
a certain subset of the training images must be forgotten to
protect the privacy or rights of the individuals concerned [20].
The datasets used in the kaggle competition have not been
disclosed, so we have studied, adapted and compared theses
approaches on another dataset, CIFAR10 [27].

1) Distillation approach [28|]: The distillation model is
based on the machine learning technique known as knowledge
distillation, which is used to transfer knowledge from a large
and complex deep neural network (referred to as the “teacher
model”) to a smaller and more efficient model (referred to as
the “student model”) [29], as illustrated in Figure |Zl

Teacher Model

Student Model

Knowledge Transfer

FIG. 2: The generic teacher-student framework for knowledge
distillation [29]].

In this approach (see Figure[3) after a partial re-initialisation
of the model weights, the main idea is to directly mimic the
final prediction of the teacher model on the retain dataset. The
aim is to maintain the high accuracy and performance of the
original model for the information we wish to retain, while
reducing the model’s capacity to correctly predict the group
of data that has been decided to be forgotten.

Fine-tuning process
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FIG. 3: Steps for the distillation approach.

The initial phase involves resetting the first and last layers
of the original model. These two layers are chosen because
the first layer significantly influences the rest of the model
layers, and the last layer determines the model’s final output
distribution. With this reset step, we enable the model to
deviate from its original state.

The next step will be fine-tuning the model, starting with
a warm-up process where the knowledge distillation can be
evidenced by obtaining the predictions of the teacher model
with respect to the data of the validation dataset and proceed to
use the Kullback-Leibler (KL) divergence loss function, or rel-
ative entropy, normally used to compare two data distributions
corresponding to predicted data and true labels [30]. In this
case the teacher information is considered as true labels and is
compared with the student’s prediction, allowing the student
to get as close as possible to it. Continuing with the fine
tuning on the retain dataset, the same knowledge distillation
procedure performed previously is carried out, but in this case
soft predictions will be used and not hard predictions. The
predictions will be used to feed the loss in three different ways:
Soft Cross entropy Loss, Cross Entropy loss [31] and KL-loss.
This final procedure allows to maintain the performance of the
original model.

2) Rotate approach [32)]: The rotation approach involves
retraining the model using a modified version of the origi-
nal model, maintaining high accuracy and performance. The
process is divided into two important steps, as shown in the

Figure [4]

Fine-tuning process
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Training with
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FIG. 4: Steps for the rotate approach.



Initially, the model will undergo unlearning with a modifi-
cation that involves transposing all weights in Conv2D layers.
This process helps in forgetting samples in the forget-set,
enabling the reuse of valuable features from the original
model. Finally, to refine the model, fine-tuning is performed
using Cross Entropy Loss [31].

3) Pseudolabeling approach [32)]: The pseudolabeling ap-
proach involves retraining the model using a modified version
of the retain dataset taking into account the performance of
the forget dataset with the original model. The process carried
out by this approach, which can be seen in the Figure [3] starts
with first, they store the inference result on the forget dataset
using the original model in three different ways:

« Store the inference of the original model on the forget
dataset;

e Perform a naive unlearning by fine tuning the original
model on the retain dataset alone and store the inference
of this model on the forget dataset;

« Re-initialize the original model and retrain it on the retain
dataset during a few epochs and store the inference of the
retrained model on the forget dataset.

Afterwards they define pseudo labels for the forget dataset,
such that data on which the classification is not quickly learned
from scratch are defined erroneously. Pseudo-labels are set to
the predictions of the fine tuned model except when the fine
tuned model is correct and the retrained from scratch is wrong
with a low logits entropy. In that case, pseudo labels are set
to the retrained from scratch model predictions.

Finally, they re-initialize the weight of the Linear layer of
the original model and train it on the forget dataset pseudo-
labeled using Cross Entropy Loss [31].

Fine-tuning process
|
Training with
Retain+Pseudo

dataset
Original model
« Re-training from
scratch model
« Fine tuned model

FIG. 5: Steps for the pseudolabeling approach.
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This approach was combined with the Rotate approach,
describe above in [[V-B2|

4) Pruning approach [33]]: In this approach, the unlearning
is achieved by increasing the sparsity of the model, guided
by the data pruning process, which consists of identifying
and removing unnecessary weights and connections from the
model [34]. This approach is performed in two main steps, the
first one of weight re-initialization using weights pruning and
the second one fine tuning the model, as shown in the Figure
6

Re-initialization process
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FIG. 6: Steps for the pruning approach.
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Regarding the first step of re-initialization we will increase
the dispersion on Conv2D and Linear layers. For this, the
weights corresponding to these layers are collected, then the
pruning criterion L1 Unstructured is chosen, in which the
L1 norm of each weight is calculated. They are listed in
ascending order and the smallest values are eliminated. In the
approach 99% of the weights were chosen to be set to zero,
and only 1% of the most relevant weights for the model are
kept. A random reset of these zero weights is then performed.
Finally, following the same process as previous approaches,
we proceed with fine-tuning on the retain dataset, combining
Cross Entropy Loss and Custom Loss (Mean squared
Error (MSE) on logits entropy) [31].

5) Deviation approach [35)]: This approach consists of
preserving, on average, the global information present in the
original trained model, while introducing noise to the model
weights.

This approach is performed in two main steps, first by
deviating randomly the parameters of the convolutional layers
from their real state, then performing fine tuning on the retain
dataset.

Fine-tuning process

FIG. 7: Steps for the deviation approach.

In the first step, we replace each weight w; of the con-
volutional layers by an observation taken from the Gaussian
distribution with expectation w; and standard deviation o.
o, is chosen arbitrarily at 0.6. This approach aims to mimic
the inherent uncertainty in the weights of the neural network
from the outset, providing a statistical basis that can influence
the convergence and overall performance of the model during
training. For the second step, we continue the training process
on the retain dataset using an optimizer Stochastic gradient
descent (SGD) algorithm [36] and the Cross Entropy Loss.
Besides, before starting the final training epoch we introduce
a little noise in the weights, in this case using o = 0.005.
This additional perturbation helps prevent the optimizer from
getting stuck in local minima of the loss function by modifying
the values of the model’s weights.

6) Gradient approach [37]: This approach aims to use the
forget dataset to analyze how it influences the gradients in
comparison with the retain dataset similarly to the Single-shot
Network Pruning (SNIP) method [38]. The gradients collected



are used as input to perform the re-initialization of the model.
This approach is performed in three main steps.

Re-initialization process ! )
Flne-tunlng process
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Gradient Training with
Collection Retain dataset

Retain and
Forget dataset

FIG. 8: Steps for the gradient approach.

The first step consists in analyzing the gradients obtained
from the predictions of both the forget dataset and the retain
dataset. They uses the cross-entropy loss and compare the
gradient descent on the retain dataset with the gradient ascent
on the forget dataset (see illustration on Figure [9).

Convolution filter gradients

O
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Retain

A

Forget

FIG. 9: First Step for the gradient approach [37].

Based on the gradient information collected in the first
step, for each convolution filter a mask is created to keep
only the 30% of its most similar gradients (see illustration on
Figure[I0). The weights corresponding to the most similar gra-
dients are re-initialized using HE Initialization [39]]. Besides,
the convolutions are replaced by MaskConv using these
masks, in order allow to focus the training on the selected
weights.

Convolution filter gradients Convolution filter weights

FIG. 10: Second Step for the gradient approach [37].

Finally, following the same process as previous approaches,
we proceed with fine-tuning on the retain dataset, using Cross
Entropy Loss with Linear Scheduler. The cosine annealing
scheduler was also used but did not provide better results for
the kaggle competition nor in our experiment

7) Divergence approach [41]]: This approach aims to use
the forget dataset, to do both the forgetting of it and to do
the fine tuning. It is composed of three fundamental steps
described in Figure [T1]
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FIG. 11: Steps for the divergence approach.

In this case, the first step is a warm-up process that involves
training the model on the forget dataset to maximize the
divergence between the model’s predictions and the correct
labels. This will be achieved training the model using KL-
loss between output logits and uniform pseudo labels, which
are defined as ones.

Finally in the process to maximize prediction accuracy,
each epoch involves two key procedures. First, we apply the
forget and retain datasets to implement Contrastive Learning
Loss [42]. This method refines the model by adjusting the
relational distance between the samples in these datasets, either
by pushing them apart or pulling them closer together. The
second procedure is a fine tuning phase o the retain dataset
using Cross Entropy Loss. This dual-step ensures optimal
adjustments for improved prediction accuracy.

8) Comparison: All the approaches contain similarities and
differences. A synthesis of the different mechanisms used in
each approach are summarized in the Table [I}

V. EXPERIMENTAL SETTINGS
A. Dataset

In order to illustrate our approach in a standard and re-
productible context, we decide to use the dataset CIFAR-
10 [27] dedicated to image classification. This dataset contains
60000 32x32 color images divided in 10 classes : airplanes,
automobiles, birds, cats, deers, dogs, frogs, horses, ships and
trucks. We have an initial division where the training dataset
corresponds to 50,000 images, and the remaining 10,000
images correspond to the held-out dataset. From this initial
training dataset, 90% will correspond to the retain dataset, and
the other 10% corresponding to 5,000 images are the data to
be forgotten (forget dataset). As for the held-out dataset, it will
be divided into 80/20 distribution for the test and validation
datasets respectively.

B. Experiment Objective

The focus of this article is about comparing the performance
of different machine unlearning approaches. The comparison
consider the runtime, the final outcomes of the model on the
different datasets and its robustness. Our aim is to highlight
the approaches offering the best trade-off.

C. Evaluation Metrics

To evaluate the performance of our models, we use common
metrics typically employed in the training of neural networks,
such as accuracy and loss. However, in this case, we pay
attention not only to the training and validation datasets but



Approach Re-init. Re-init. Fine Tuning | Fine Tuning | Fine Tuning | Competition
Weights Gradients | on Valid on Forget on Retain Place
Distillation | v v v 6
Rotate v v 5
Pseudo v v 5
Pruning v v 4
Deviation v v 3
Gradient v v v 2
Divergence v v 1

TABLE I: Synthesis of the Different Mechanisms Used in Each Approach.

also to the test, retain, and forget datasets to observe their
behavior during each epoch. In addition to these metrics, we
analyze runtime efficiency and AUC (Area Under the Curve)
scores of ROC (Receiver Operating Characteristic) Curve in
the case of a membership inference attack (MIA), which will
be explained below.

1) Accuracy on retain, forget and validation datasets: The
accuracy measure the ability to the model to well predict. Our
objective is double:

« Preserve (or increase) the accuracy for the validation and
the retain datasets compare to the original model.

o Decrease the accuracy for the forget dataset compare to
the original model. Although it should not be significantly
lower or similar than the validation accuracy.

Denote that we consider the value on the different losses, but
for the sake of brevity and clarity, in this article we will only
display accuracies.

2) Run Time Efficiency: Run Time Efficiency is a measure
of the computational resources and time required to perform
a specific task, such as training, inference, or unlearning in
machine learning models.In machine unlearning, run time
efficiency is critical as it affects the practicality and scalability
of the unlearning processes [1]]. Efficient unlearning techniques
ensure that data can be removed quickly and with minimal
computational overhead, making it feasible to implement un-
learning in real-world applications where timely compliance
with data removal requests is essential. This also highlights
that we want the unlearning to take much less time than
retraining the model from scratch.

3) AUC Score of ROC Curve under MIA Attack: The Mem-
bership Inference Attack (MIA) process begins by grouping
data from the test and forget datasets, followed by their
comparison. It seeks to determine if a specific sample was part
of the model’s forget dataset, based on the loss assigned by
the model. Losses for each sample are computed, and binary
labels (1 for forget, O for test) are assigned. These losses
and labels are then used to train a logistic regression model
that learns to differentiate between the two datasets. Stratified
cross-validation is used to train and evaluate the attack model,
ensuring that each subset maintains the original proportion of
test and forget samples. Finally, the attack model’s accuracy is
calculated for each subset, reflecting how well it distinguishes
between forget and test samples.

By analysing the classification threshold of the attack model
with obtain the AUC of ROC Curve of a MIA attack. The ROC
Curve represents the true positive rate against the false positive
rate at each classifier threshold setting.

An AUC close to 0.5 means that the attack model is not
able to distinguish between the forget and the test datasets.
Thus it will be difficult for an attacker to infer information
on the unlearned dataset from the unlearned model.

VI. RESULTS

The variability of the results is assessed across different
splits between the Retain dataset and the Forget dataset, i.e.,
how each model behaves with different subsets of data. This
process was repeated over 10 iterations.

A. Model Performance

During the forgetting process performed by each approach,

an analysis of accuracy and loss was conducted at each
epoch, with the aim of observing particularly the decrease
in accuracy and the increase in loss during the early stages
of forgetting, due to the techniques that directly affect the
model’s head or layers. Subsequently, the increase in accuracy
and the decrease in loss were observed during the fine-tuning
process performed by each approach. The difference will be
especially noticeable in the final accuracy result.
At the top of Figure [I2] we provide the boxplots of the
accuracies of each approach on the retain and validation
datasets, both with a random and a target forget sets, to allow
comparison with the original model, i.e.,before the unlearning
process. In addition to the approaches already studied and
the original model, we will also provide the accuracies of a
model we have termed ‘“‘simple”, as its unlearning process
involves only fine-tuning on the retain dataset without any
additional processing, unlike the other approaches and of the
original model. There, we do not represent gradient method,
which is significantly worst than the other methods. Keeping
it on would greatly reduce the readability of the figure.
Useful unlearning is not supposed to degrade the model’s
performance, so the retain and validation accuracies should
remain close to those of the original model.

At the bottom of Figure [T2] we plot the ratio between
the accuracies on the forget and validation sets. An effective
unlearning approach should yield a ratio close to 1. As shown
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FIG. 12: (Top) Accuracies of Retain and Validation sets by approach and dataset. (Bottom) Ratio between accuracies on forget
and validation sets by approach and dataset. Both respectively with 9 (Left) and 20 (Right) epochs.

in the figure, the original model displays differing accuracies
between the validation and forget sets, which is expected, as
no unlearning method has been applied and the forget dataset
was randomly selected.

For the distillation, pseudo-labeling, simple, and deviation
approaches, the accuracies between the forget and validation
datasets are quite different, indicating incomplete unlearning.
For all these approaches, considering 9 or 20 epochs lead to
similar results. Gradient approach requires a greater number
of epochs than the others unlearning approaches to attain a
similar performance to that of the original model on the retain
dataset. A plausible hypothesis is that the utilization of gradi-
ents for unlearning may be an effective strategy, yet it poses
a challenge for the model to regain its original performance,
potentially due to the complexity of the unlearning process.
Rotate and pruning approaches allow to make accuracies of
validation and forget datasets close. However, it degrades the
performance on the validation datasets (pruning more than
rotate). Considering more epochs allow a smaller degradation
and reduce variability. Divergence is more dependent than the
others approaches to the number of epochs. With 9 epochs,
the accuracies on the validation datasets are a little stronger
than the accuracies of the original model. The accuracies on
the forget datasets are stronger but close to the accuracies on
the validation datasets. With 20 epochs, the accuracies on the

validation datasets are a little smaller than the accuracies of
the original model (and with more variability). The accuracies
on the forget datasets are smaller but close to the accuracies
on the validation datasets. This let us think that with a good
choice of the number of epoch, we should be able to have
similar accuracies on the forget and validation datasets and
accuracies on the validation dataset close to the accuracies of
the original model.

Furthermore, we computed the approaches with a reduced
number of epochs, specifically 5, and observed that the results
exhibited negligible variation compared to those achieved at
9 epochs for most of the approaches, suggesting that the
models had already converged to a stable performance at this
earlier stage. This suggests that the models are able to learn
and unlearn effectively within a relatively small number of
epochs, and that further increases in the number of epochs may
not yield significant improvements in performance. Among
the approaches evaluated, Rotate, Pruning, and Divergence
emerged as the best performing.

B. Run time efficiency

Figure T3] provides the run time of each approach for the ten
repetitions with 9 epochs. First, all approaches exhibit a sig-
nificant reduction in computational time, with none requiring
more than half the time needed to re-train the original model,



which takes around 41 minutes and 41 seconds. Furthermore,
the simple, deviation and divergence models demonstrate the
fastest unlearning times, a characteristic that underscores their
robustness in terms of run time efficiency. Pseudo labeling
takes more time and divergence is faster than the others
unlearning approaches.

Run Time by approach

= = == =

Time (Pourcentage compare to the original model)

divergence  simple  deviation  rotate  gradient  pruning distillation pseudo

Approach

FIG. 13: Run Time by approach with 9 epochs, as a percentage
of the training time of the original model.

C. MIA

Consistent with the previous metrics, we evaluated the
robustness of the unlearning approaches against MIA Attacks
considering the 10 experiment repetition. The results, pre-
sented in the left part of Figure[T4] illustrates the variability in
AUC across each approach, as well as the original model. It is
noteworthy that an AUC closer to 0.5 indicates a more effec-
tive unlearning process, as the attack is unable to differentiate
between samples from the forget dataset and those from the
test dataset, suggesting that the forget data is indistinguishable
from unseen data to the model. This evaluation provides a
robust assessment of our approach’s ability to protect sensitive
information, and the results demonstrate its effectiveness in
mitigating MIA Attacks. Some results of Figure [T4] are co-
herent with Figure [[2] All models demonstrate a reduction of
MIA AUC Score compared to the original model. The MIA
AUC Score of simple, deviation, pseudo and distillation is

ROC AUC of MIA by approach
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FIG. 14: AUC scores in case of MIA Attack by approach
with 9 epochs with forget set randomly chosen and forget set
targeted on red images.

stronger than for the other unlearning approaches. Moreover,
the MIA AUC Score of rotate, pruning, gradient and diver-
gence is close to 0.5, the attack perform almost as well as a
random attack. The attack on the pruning seems the closer to
a random attack.

D. Realistic forget dataset

To push our benchmark further we have compared the
different approaches with a target forget dataset. We have
selected 525 pictures having a lot of red, to be part of the
forget dataset. To select these images, we have used the
process proposed by [43]. The accuracies on the retain and
the validation sets as well the ratio between the accuracies
on the forget and the validation sets are given in Figure [12]
In the majority of case, the range of the boxplots are larger
than when the forget set is chosen randomly. Despite this, the
overall behavior of the methods remains close to that observed
in the random choice context. Methods like rotate and pruning
whose forget and validation accuracies are close in the case
of random forget set selection keep them close in the case of
targeted forget set selection. For the sake of clarity, we have
not shown the results with 5 epochs in the Figure|12] However,
for the divergence method, with 5 epochs, the accuracies of
the forget and validation sets are the closest, while maintaining
a high level of performance on the retain set. On the right part
of Figure [T4] we see that the AUC with target forget dataset
has more variability than random forget dataset. Besides, the
MIA is almost random when rotate or pruning methods are
used.

VII. CONCLUSION

Our study highlights the importance of striking a balance
between performance, time, and defense against attacks in
machine unlearning models. While achieving high perfor-
mance is crucial, it must be accomplished within a reasonable
time frame to maintain efficiency. Moreover, defense against
attacks is vital to prevent malicious actors from manipulating
the model’s outputs or stealing sensitive data. Our results
identify that rotate, pruning, and divergence approaches offer
a promising balance between these three aspects, although
the variability of the divergence method’s results must be
considered. These findings provide a foundation for future
research and development in the field of data removal and
machine learning.

We consider both a randomly selected forget dataset and
a more realistic representation of real-world data privacy
scenarios where the forget dataset is based on specific image
characteristics, such as color. Identifying these features allows
for more accurate data removal, as demonstrated in [21] for
future researches.

Future research directions include exploring class removal
and the use of alternative datasets, as well as developing
metrics such as the Amnesis index [44] and MIA attack
based on LiRA [23] to determine the most robust method for
defending against attacks.
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