
Red Team BERT: Reliable Automated Penetration
Testing with Multi-BERT Architecture

Christophe Genevey-Metat
R&D AI / Cyber Team

NEVERHACK
Rennes, France

cgeneveymetat@neverhack.com
0000-0002-1901-626X

Guillaume Nollet
R&D AI / Cyber Team

NEVERHACK
Rennes, France

gnollet@neverhack.com
0009-0006-7101-8680

Pierre-Marie Satre
R&D AI / Cyber Team

NEVERHACK
Rennes, France

pmsatre@neverhack.com
0000-0002-8010-1885

Loı̈c Scotto Di Perrotolo
R&D AI / Cyber Team

NEVERHACK
Rennes, France

lscottodiperrotolo@neverhack.com
0009-0001-8614-7008

Olivier Gesny
R&D AI / Cyber Team

NEVERHACK
Rennes, France

ogesny@neverhack.com
0000-0003-2132-4875

Abstract—Artificial intelligence has become particularly cru-
cial in its integration with cybersecurity applications. Numerous
studies have demonstrated that reinforcement learning agents
can identify optimal sequences of actions to attack a network.
However, these agents are often overfitted to specific environ-
ments and struggle to generalize or adapt to networks that
differ from those encountered during training. Moreover, most
of these agents rely on complex abstract architectures which
lack interpretability in their decision-making processes. In this
work, we propose a novel agent architecture that integrates four
transformer-based BERT models. This architecture can adapt
to any given network, is robust to changes in parameters and
objectives, and requires no additional training phase to attack
unseen networks. Additionally, our model is interpretable using
SHAP values. We introduce a specific context tailored to this
architecture and reuse an evaluation metric we developed in our
previous work that more accurately reflects an agent’s ability to
attack a network without prior knowledge. Finally, we discuss
the limitations of our approach and outline future directions to
facilitate its deployment in real-world applications.

Index Terms—pentesting automation, attack simulation, zero-
shot classification, transformers, large language model, adapt-
ability, robustness, explainability

I. INTRODUCTION

Pentesting consists of discovering and exploiting weak-
nesses within a network, in order to help a company identify
vulnerabilities present in their information system. In the
context of research, pentesting is always studied as an op-
timization problem whose objective is to compromise a target
with a minimum sequence of actions. Most agents are trained
using reinforcement learning, and they choose unit attacks
to reach and compromise the target. Many researchers [1],
[4]–[7], [9]–[11] have studied RL agents to solve pentesting
problems, and several simulators have been developped to
help the community train their own RL agents. However, in
a real-world application, pentesting is usually more complex
than an optimization problem, because network topologies

differ across companies: a sequence of actions that works
for one organization may fail for another due to specific
configurations. Thus an AI agent must explore and discover
information before exploiting it. This discovery of information
results in extra actions being performed instead of blindly
learning the path towards targets.

In our previous work [2], we presented a zero-shot LLM-
based agent for automated network penetration testing, of-
fering strong adaptability without retraining. We introduced
a novel evaluation metric that rewards informed decision-
making over trial-and-error. The model outperformed classical
RL agents (DQN, PPO, CLAP) in unseen NASim [8] environ-
ments of small and moderate sizes using textual observations.
Preliminary SHAP-based analysis provided insight into the
agent’s decision-making process. Overall, this served as a
promising step towards explainable and robust AI for red
teaming.

In this paper, we extend our approach by combining several
BERT models to build a complete pipeline that determines,
at each point in time, the machine one must target and
the action that needs to be taken. First, we construct var-
ious datasets derived from the NASim environment, with
dynamically generated network topologies. We train our BERT
models separately: one to predict the correct machine given
a textual representation of the network; one to predict the
appropriate action based on the selected machine; and two
to predict eventual parameters of the action. Each textual
representation is distinct and tailored to its respective decision-
making task. After training the four BERT models, we develop
a sequential pipeline to execute them in inference mode. This
pipeline is then used to predict a full sequence of actions
on unseen NASim topologies. To improve generalization, we
also implement a rollout mechanism and a padding system,
allowing the pipeline to adapt to new topologies that may
be smaller or larger than those encountered during training.



Finally, we compare our approach to another reinforcement
learning-based method called CLAP [10], and our previous
work on zero-shot decision making. We demonstrate that
our pipeline outperforms these two RL agents and shows
much stronger generalization capabilities. We also provide
explainability results on our BERT-based architecture and
compare them with our initial explainability work on the zero-
shot model.

The paper is organized as follows: Section II presents related
works on RL agents for pentesting. Section III introduces
the environment and data used in our approach. Section IV
presents our four BERT architectures for machine, action,
and parameter selections, and the specific contexts of each of
them. Section V presents our experiment on the explainability
obtained after training. Section VI details the performance and
results of our pipeline in an RL environment and compares
them to other RL agents. Finally, Section VII concludes with
future improvements and works to extend our BERT-based
system.

II. RELATED WORKS

The research community has focused on two main areas:
generating environments for scenario simulation and emula-
tion, and designing models for efficient real-life deployment.

Famous environments for automating red team exercises
include NASim [8] and NASimEmu [5]. NASim (literally
”Network Attack Simulator”) simulates an information sys-
tem that is composed of one or multiple subnetworks, each
containing a specific number of host machines. Each host
has an operating system and exposes services and processes
that may be scanned and targeted to gain privileged access to
the host. The main goal of NASim scenarios is to gain full
access on specific hosts, which are called targets. Firewalls
impose restrictions on both inter-subnet traffic and Internet
connectivity. NASimEmu builds on the NASim environment
to support emulation, and may also generate scenarios with a
given level of diversity by changing the path required to reach
the target. Other works for environment simulation include
the GAP model [11] introduced by Zhou et al. in 2025,
which explores domain randomization for scalable scenario
generation and meta-reinforcement learning to enable few-
shot adaptation. A Large Language Model is used to perform
domain randomization and generate diverse environments that
are closer to real-world network configurations.

Most of the literature adapts various reinforcement learning
methods to the problem of automated pentesting, but most of
them show weaknesses regarding generalization difficulties.
For instance, in 2022, Yan et al. presented CLAP [10], a
variant of the PPO algorithm that can handle multi-objective
reinforcement learning in a pentesting context. CLAP uses
a cover mask mechanism that allows the model to keep
track of previous actions performed in the past. Though the
authors show that their model quickly converges to the optimal
sequence over the three scenarios during the training phase
compared to other algorithms (DQN, Improved-DQN, HA-
DQN), they do not show the performance during an evaluation

phase. The same goes for AutoRed [3], presented in 2024
by Hasegawa et al., which utilizes Graph Neural Networks
(GNNs) to encode the dynamic structure of the target net-
work. This approach was not evaluated on previously unseen
topologies, making it unclear whether the agent can generalize
effectively to new network structures.

To tackle this challenge of generalization, Yan et al. in-
troduced SetTron [9], which uses randomly-rearranged state
representations that include information about each host as
well as actions performed on them. SetTron is more flexible
than CLAP in that it maintains good performance if one
changes the location of the target in the network on which
SetTron has been trained. However, the adaptability of the
model for truly unseen network topologies has not been
demonstrated by the authors. Another approach [7], presented
by Nyber et al. in 2024, goes a bit further: a message-passing
neural network (MPNN) is trained with multiple agents using
reinforcement learning. Evaluated in the CAGE 2 environment,
it achieves non-trivial performance on scenarios which it has
not been trained on, although this performance remains inferior
to Multi-Layered Perceptrons (MLP) trained specifically on
these scenarios.

Finally, a certain amount of papers defend the use of Large
Language Models (LLMs). On the defensive side, Huan et
al. presented in 2024 a two-step LLM called PenHeal [4],
that first identifies multiple vulnerabilities in a system, and
then suggests optimal remediation strategies. In 2025, Kim
et al. introduced a model called CyberAlly [6], which aims to
provide real-time, context-aware support for cybersecurity pro-
fessionnals through textual clues. On the more offensive side,
in 2024, Deng et al. introduced PentestGPT [1], a multi-agent
LLM planner that automates three key red team processes:
planning, execution, and result interpretation, using one LLM
for each. The three modules work together to guide the user
during the penetration testing process. Finally, in our previous
work [2], we introduced a zero-shot LLM-based approach for
automated pentesting, which outperformed state-of-the-art RL
methods like DQN, PPO, and CLAP on NASim benchmarks
and also required no retraining to generalize across unseen
topologies. A new evaluation method rewards the discovery
of useful information for exploits and privilege escalations,
thus promoting better decision-making. Early explainability
results using SHAP highlight its potential for interpretable red
teaming.

III. ORIGINAL DATA, FEATURING AND ACTIONS

A. General concept

Selecting an attack target requires enumerating available
machines with their properties and predicting the most urgent
one. The same principle applies to action selection: given the
properties of all available machines and the list of available
actions, the most critical action must be predicted. Note
that a third choice may be required for actions that require
specific parameters (such as exploiting a particular service
or escalating privileges on a specific process). In that case,
the context of the machine, the chosen action, and the list of



available parameters is given for that final choice. These three
choices lead to the definition and training of three separate
BERT models.

NASim is ideal for handling some real-world complexi-
ties (e.g. firewall restrictions, non-deterministic actions), even
though its overall complexity remains much lower than that
of an actual real-world application. In the case of NASim,
the information required to determine which machine should
be attacked encompasses the IP address, role, current access,
observed OS, observed processes and observed services of
every machine. It is easy to extract this information from the
NASim environment and print it sequentially.

To be more precise, the NASim environment stores at each
point in time a list of machines, each identified by IP address
and characterized by the following: operating system, available
services and processes, and status indicators for discovery,
reachability, sensitivity classification, and our current level of
compromise. We have augmented it with indicators showing
whether subnet scans have been launched from that machine.

Once a machine has been selected, the appropriate action
to perform on the target machine must also be selected from
the various action types that NASim supports:

• Simple actions to collect more information: OS scan,
process scan, service scan, subnet scan

• Complex actions aimed at gaining restricted access on a
machine: vulnerability exploit, privilege escalation

Complex actions need parameters in order to specify what
type of attack we want to execute. For vulnerability exploit-
type attacks, these parameters consist of a required service, an
optionally required OS, as well as the access granted by the
attack. For privilege escalation type attacks, the parameters
consist of a process, the given access, and optionally an
operating system.

B. Abstraction methods

Pentesters are primarily concerned with actionable vulner-
abilities rather than exhaustive system analysis, which im-
plies cross-referencing the vulnerabilities that stem from the
processes, services and operation systems of the machine.
For this reason, our transformer focuses on linking relevant
concepts rather than understanding domain-specific details.
For instance, let’s imagine an exploit that uses the FTP service
in a Linux OS to grant the User access to the attacker. Though
this representation appears meaningful, a model only needs to
understand that an exploit that uses a service called X, an OS
called Y to grant access Z is relevant to be used if the target
machine uses service X on OS Y, and access Z has not yet
been granted on it.

For this reason, and in order to get results that may be
more generalizable and less domain-specific, a conversion is
applied to most domain-specific words in the source text at
random. ”Linux” and ”Windows” may be converted to ”OS1”
and ”OS2”, respectively, or the other way around. Similarly,
services ”FTP”, ”SSH” and ”HTTP” may become any of
”SERVICE1”, ”SERVICE2” and ”SERVICE3” in any order.
The key requirement is that within any given sentence, each

service is represented consistently and distinctly from other
services.

Sentence Meaning

IP2 STATUS1 ROLE1
OS1 SERVICE2
SERVICE3 PROCESS0

The machine with IP n°2 is not critical
(ROLE1) and has not been attacked yet
(STATUS1). It uses operating system 1,
houses services 2 and 3, and its processes
are not yet known. Machine selection con-
sists of many such sentences separated by
commas.

ROLE1 ACCESS0 OS0
SERVICE2 PROCESS0 |
PRIVILEGE, OSSCAN,
EXPLOIT, DISCOVERY,
PROCESSSCAN

The machine we target is not critical
(ROLE1), does not have any privileged ac-
cess (ACCESS0), and we don’t know its
operating system or processes. We do know
that it houses service 2. The five actions
listed after the pipe may be launched. This
sentence is used for action selection.

ACCESS1 OS1
SERVICE5 SERVICE2
PROCESS2 |
PRIVILEGE | PARAM4
PROCESS3 ACCESS2,
PARAM1 PROCESS2
ACCESS2

Considering the machine with given char-
acteristics and the fact that a privilege es-
calation action is about to be launched, two
parameters are available: an escalation using
process 3, another using process 2. Both
grant access 2. This sentence is used for
parameter selection.

TABLE I
INPUT SENTENCE EXAMPLES FOR MACHINE, ACTION AND PARAMETER

SELECTION.

Table I describes the three types of sentences or propositions
that are used in our classification processes.

Of the three classification problems, the one whose inputs
tend to be the longest is the machine classification problem.
Indeed, if one needs to differentiate between four different
machines, one needs to describe all four machines fully. Note
that, with this kind of convention, it is possible to identify a
machine using either its position in the list (select the fourth
machine in the list), or its identifier (select the machine with
IP16 - we use the term ”IP” loosely here to refer to the
machine identifier). In the following section, when defining
the transformer architecture for machine selection, we compare
the results of our architecture in both cases and point out the
advantages and drawbacks of each of them. The same is done
for parameter selection.

C. Dataset generation

In our study, we generated both synthetic datasets (generated
using hard-coded rules) and simulated datasets (generated by
running NASim on different networks and saving the observed
environment at each step). The results shown in sections IV
and VI only use simulated datasets, and no synthetic dataset
has been used to train nor test the models we present in this
paper.

In order to generate a labeled dataset for the different parts,
we design a heuristic that assigns the labels corresponding to
the ’best machine’, the ’best action’, and the ’best parameter’.

We define the ”best machine” to select using the following
rules:

• first select any machine that is among the target machines
of the network,



• then select any machine which has been compromised
but not fully exploited (a machine is considered fully
exploited once a subnet scan has been executed from it.
For target machines in the network, root access needs to
have been obtained as well),

• then select any machine which has not yet been compro-
mised.

Once a machine has been selected, we define the ”best
action” using the following rules:

• scan the machine OS and services if the machine is not
yet compromised,

• launch an exploit if all the information needed to launch
one is discovered,

• launch a process scan if the machine is a target and is
compromised,

• launch a privilege escalation if the machine is an already
compromised target machine and processes have been
scanned,

• launch a subnet discovery if the machine is fully com-
promised (for targets) or compromised in any way (for
non-targets).

The selection of parameters ensures consistency by choos-
ing exploits that match the target’s operating system and
use the services available on the machine. When multiple
compatible exploits are available, the selection prioritizes the
one that grants the highest privilege level. A similar reasoning
is used for privilege escalation actions.

We execute this heuristic on random NASim scenarios that
have a number of hosts equal to 4, and a number of services
equal to 4.

In Table II, we summarize the number of challenges exe-
cuted using the heuristic in order to generate the datasets. We
also summarize the amount of labels inside each dataset.

TABLE II
NUMBER OF CHALLENGES USED TO MAKE DATASETS

Dataset For Train Valid Test Labels

Machine selection 100K 50K 5K 10
Actions selection 100K 50K 5K 6
Param selection (exploit) 50K 50K 5K 4
Param selection (privilege) 100K 50K 5K 2

IV. TRANSFORMER DEFINITION AND RESULTS

Since all three problems (machine selection, action selec-
tion, and parameter selection) rely on textual input representa-
tions, transformer architectures are particularly well-suited to
solve them. We train four distinct transformer models for this
purpose:

• one for machine selection
• one for action selection
• one for parameter selection in the case of an exploit
• one for parameter selection in the case of a privilege

escalation

Each transformer is trained using the labeled data from
the aforementioned databases. During training, we constrain
our dataset to randomly generated NASim networks with
4 hosts. Generalization to larger networks is explored in
section VI. This training proves highly effective, with every
transformer achieving 100.0% accuracy on both validation and
test datasets.

Table I details the inputs for each transformer. The final
entry regarding exploit and privilege escalation parameters
applies to both parameter selection transformers: one processes
examples containing ”EXPLOIT” keywords, while the other
handles examples with ”PRIVILEGE” keywords.

TABLE III
HYPERPARAMETER COMPARISON BETWEEN THE FOUR BERT MODELS

AND THE ZERO-SHOT ARCHITECTURE.

Parameter BERT Zero-shot

Epochs [40, 10, 40, 40] None
Batch Size [32, 32, 32, 32] None
Vocab size [37, 45, 29, 35] 50,265
Parameters [486K, 486K, 495K, 495K] = 1.97M 407M

In Table III, we summarize some of the hyperparameters of
our four BERT models (machine selection, action selection,
”EXPLOIT” parameter selection and ”PRIVILEGE” parame-
ter selection respectively), and compare them to our previous
work based on a zero-shot model [2]. When comparing the two
approaches, we observe that our four BERT models combined
have a much smaller amount of parameters than that of the
zero-shot model, resulting in a more lightweight architecture.

In the next section, we demonstrate that our model provides
more consistent interpretability compared to the zero-shot
model.

V. EXPLAINABILITY OF THE RESULTS

Hereafter, we present two methods for model explainability.
The first is SHAP values, a game-theoretic approach to explain
the influence of certain features using do-calculus. The second
approach involves systematically modifying inputs in domain-
relevant ways to observe our model’s responses.

SHAP values quantify each input feature’s contribution to
the prediction using game theory. The SHAP value of a model
relative to a given input feature corresponds to the expected
value of the output of that model as we intervene on the input
feature, and represents how much that feature influences the
model’s output compared to the baseline prediction. There is
a set of SHAP values for each predicted class : one may both
analyze the reasons why a certain output has been chosen, and
why another has been rejected.

A. Machine selection
In this section, we demonstrate how role and status key-

words influence our model’s decision-making. To illustrate
this, we created two different network contexts with four
potential IPs to choose from.

In the first context, three machines share the same informa-
tion (ROLE1 and STATUS1), while one has a different status



Fig. 1. Shap value of label ”IP5”

Fig. 2. Shap value of label ”IP2”

(STATUS2), indicating that it is already under attack. That
machine is correctly predicted (IP5) by the model. In each
figure in this section, one can observe possible outputs at the
top of the picture and the model input at the bottom. For
a selected output (which is underlined), we can observe the
contributions of each input token. Figure 1 shows that the
words IP5, STATUS2 and ROLE1 from the target machine
provide the strongest positive contributions to this prediction,
which is consistent with human reasoning.

When examining the other predicted labels, we see little
to no influence overall, except for label IP2 (Figure 2), where
STATUS2 and ROLE1 from the third machine (IP5) contribute
negatively. This negative contribution is also meaningful, as it
reduces the confidence in IP2 when machines with higher-
priority statuses are present in the input.

Fig. 3. Shap value of label ”IP6”

Fig. 4. Shap value of label ”IP2”

The second context is quite similar: three machines share
the same attributes (ROLE1 and STATUS1), and one machine
also has STATUS1 (indicating no attack) but is associated with
ROLE2 (indicating a potential target). The predicted label is

IP6, which corresponds to the target machine. Interestingly, the
SHAP values from Figure 3 indicate that the model’s positive
attribution is not primarily based on ROLE2, but instead on
the STATUS1 and ROLE1 from the other machines in the
input. This result can be interpreted as follows : if all others
machines have ROLE1 but IP6 has ROLE2, then it is IP6 that
must be selected. Further insights are provided in Figure 4,
which presents the SHAP values for the alternative predic-
tion IP2. We observe several negative contributions, notably
from ROLE1 and STATUS1, which appropriately reduce the
model’s confidence in selecting IP2. This behavior is logical:
when a more relevant role (ROLE2) is present elsewhere in the
input, candidates with less relevant roles should receive lower
confidence scores. Additionally, ROLE2 associated with the
IP6 machine also contributes negatively to the prediction of
IP2, reinforcing the model’s preference for IP6.

We note, however, that in both Figure 3 and Figure 4, words
other than role and status turn out to be important during
the classification process. In particular, we observe in this
context that the word ’,’ is one of the main positive factors
in the prediction of the IP. This specific case shows us that
our model’s learning is not perfect, and that we must remain
cautious regarding its interpretation. We verified these obser-
vations using direct intervention on inputs generated using live
scenarios and looking at the response. In doing so, we noticed
that downgrading the role and status of the selected machine to
role 1 (unimportant) and status 1 (unattacked), when there are
other machines with a better role-status combination, changes
the prediction of the model 69.4% of the time. Had the model
only used role and status to make its decision, we would have
expected a 100% score instead. The difference lies in the fact
that other parts of the input data are used, most probably
because of the important correlation that happens in practice
between the status and the information we have access to (OS,
services and processes).

B. Action selection

This section demonstrates how operating system and ser-
vices features influence the action selection process. For this
demonstration, we constructed a context with a maximum of
six selectable actions.

Fig. 5. Shap value of label ”SERVICESCAN”

In this scenario, our model does not have any type of infor-
mation regarding the host: OS0, SERVICE0 and PROCESS0
indicate that the OS, services and processes are unknown.
For this reason, the predicted action is a SERVICESCAN.
In Figures 5 and 6, we observe that the most significant



Fig. 6. Shap value of label ”OSSCAN”

contributions come from SERVICE0 and the action name
SERVICESCAN itself. Since it is both feasible and necessary
to execute a service scan, the model appropriately selects
SERVICESCAN over other available actions. Note that, in
Figure 6, the OS0 word contributes positively to the OSSCAN
prediction, which makes sense since OS0 indicates that the
operating system is not known. Still, the model does not
predict the OSSCAN action because it is strongly negatively
influenced by SERVICE0 and SERVICESSCAN, which re-
duce its confidence in selecting this action.

In a context different from the one previously presented,
manual intervention analyses confirm that unsetting the OS
or service information (turning it back to OS0 or SERVICE0
respectively) changes the chosen action 100% of the time (as
getting that information is now back to being a priority).

C. Param selection

In this section, we analyze how discovered service names
influence our model’s parameter selection. To illustrate this,
we constructed a specific scenario where the host uses OS2 and
SERVICE2, with one available exploit specifically requiring
these two features.

Fig. 7. Shap value of label ”PARAM2”

Fig. 8. Shap value of label ”PARAM7”

When examining the SHAP values for the PARAM2 pre-
diction in Figure 7, we observe that contributions come from
various features. Several unrelated elements (e.g., SERVICE4,
OS1, SERVICE3) contribute positively to the prediction,
whereas SERVICE2, which actually matches the service run-

ning on the target machine, is only the fourth most positively
weighted feature.

To understand how the model still selects the correct pa-
rameter, we examine how it evaluates alternative parameters.
Each alternative receives strong negative contributions from
incompatible services. For example, Figure 8 illustrates a neg-
ative contribution from SERVICE3 when predicting PARAM7,
which is expected since this parameter does not include
that service. Similar patterns are observed for PARAM3 and
PARAM8. We hypothesize that rather than directly selecting
compatible features, the model eliminates incorrect options
by identifying contradictions, ultimately choosing the only
parameter that does not contradict the machine context.

D. Discussing BERT vs zero-shot

In our previous work on the zero-shot model [2], we
computed SHAP values and observed that the model was
often influenced by irrelevant or nonsensical tokens (such as
‘the’, ‘.’, etc.). This observation was one of the motivations
for restricting the input context in our current work, where
we provide only direct information that could meaningfully
support the model’s decision-making process. This approach
enables more logical reasoning that aligns with the input
context.

VI. LIVE PERFORMANCE MEASURE

In this section, we present the pipeline used for decision-
making in the RL environment, the evaluation metric used
to compare different RL agents, and the performance of our
RedTeamBERT model compared to the zero-shot and CLAP
models across four scenarios.

A. Sequential BERTs for decision-making

Figure 9 depicts the complete RedTeamBERT architecture
during the evaluation phase, which combines the three
specialized models described in the previous section. The
decision-making pipeline operates sequentially: it first selects
the target machine to attack, then chooses the appropriate
action to perform on it, and finally, if the action requires
parameters, it selects the most suitable ones to execute the
action on the chosen machine. The contextual information
used at each decision level is detailed in the previous section.
Additionally, the pipeline includes two mechanisms designed
to handle various network topologies: the ”padding system”
and the ”roll system”.

1) Padding system: The padding system was developed
after we observed that our RedTeamBERT model could be
influenced by the length of the input context (either the
machine context or the parameter context). To mitigate this
issue, we introduced a padding system for both machine and
parameter selection. The padding system is generally used
to handle topologies that are smaller than those encountered
during the training phase. It is triggered whenever the
number of machines or parameters available at inference time
is smaller than the number observed during training. For



IP x Context IP y Context

BERT classifier
Machine selection

Machine’s context Available actions type

BERT classifier
Action selection

Machine’s context Available parameters

BERT classifiers
Parameter selection

Environment

If parameter required

If no
parameter
required

Fig. 9. Decision path taken by our model in inference mode

example, if the model was consistently trained on 4 parameters
but encounters only 3 during inference, we automatically
add dummy parameters to preserve the expected total of
4. This guarantees fixed-length input sequences, enabling
stable decision-making by RedTeamBERT. We chose to fix
the context size to 4 machines for machine selection, and 4
parameters for parameter selection. These values correspond
to the maximum context sizes observed during training. This
mechanism prevents the model from making suboptimal
decisions due to context length mismatches between training
and evaluation.

2) Roll system: The roll system was developed to
enable the BERT model to handle topologies larger than
those encountered during the training phase. It is triggered
whenever the number of machines or parameters available at
inference time exceeds the number seen during training. The
roll system operates by selecting a pool of N machines (or
parameters) and making an initial prediction. It then creates
a new pool by retaining the top prediction and replacing
the remaining N-1 items with new candidates. The model
processes this new pool to generate another prediction,
and this rolling process continues until all machines (or
parameters) have been evaluated. In the end, we obtain a
prediction that reflects the best machine (or parameter) across
the entire set. In theory, this approach creates an unfair

advantage for parameters appearing later in the list, since
those evaluated early must survive multiple rounds where
they could be incorrectly eliminated because of repeated
model predictions. However, that is not a problem in our case,
because we demonstrated that our BERT-based models for
both machine and parameter selection achieve 100% accuracy.

The padding system and roll system can be complementary
and may be triggered simultaneously. This can occur, for
instance, when the topology is smaller than in the training
examples but requires more exploit parameters than expected.
Conversely, it may also happen when the topology is larger,
but fewer parameters are available compared to those observed
during training.

B. Evaluation metric
The standard performance metric for evaluating RL agents

on the NASim environment is typically based on the number of
actions required to compromise the target machine. However,
we argue that this metric is suboptimal for evaluation pur-
poses, as it penalizes exploratory actions aimed at gathering
information about network hosts, treating them as unnecessary
overhead, and instead favors direct exploitation attempts. Such
behavior encourages rote learning and diverges significantly
from that of a human pentester, who generally seeks to collect
relevant information about a target before initiating any attack,
especially in unfamiliar network environments. To address
this limitation, we reuse the evaluation metric developed in
our previous work [2] that explicitly encourages information-
gathering behavior prior to exploitation, thereby aligning the
agent’s decision-making process more closely with real-world
pentesting practices.

Rfinal = Rstandard + α ∗
n∑

t=1

1coh(at, ct) (1)

Our evaluation metric returns the classic reward plus a bonus
at the end of the challenge. Equation 1 formalizes this metric,
which provides a more accurate assessment of RL agent
performance during the evaluation phase. The classic reward,
denoted as Rstandard, corresponds to the cumulative cost of
all actions performed by the agent. The bonus term is defined
as the amount of all actions at that are coherent when executed
within their respective context ct, weighted by a configurable
factor α. The coherence function 1coh : A×C → {0, 1} returns
1 if all the information required for normally executing action
at is displayed within context ct, and returns 0 otherwise.
The coefficient α compensates for the cost of information-
gathering actions (e.g., os scan, service scan, process scan).
Agents that leverage discovery actions to guide their exploits
receive a bonus reward. This factor must be set higher than
3, as compromising a machine typically requires discovering
at least three attributes: operating system, services, and pro-
cesses, each of which incurs a cost of -1. The metric is applied
consistently across all evaluated agents (CLAP, zero-shot, and
RedTeamBERT), and includes a safeguard to prevent multiple
bonuses for repeated discovery of the same information.



C. Results

To evaluate our RedTeamBERT model against baselines, we
used four scenarios: the tiny and small-linear scenarios already
studied in our previous work with the zero-shot model, and
two new scenarios, medium-test and large-test, inspired by the
original medium and large scenarios. Table IV summarizes
the network topology used in each scenario. We do not
compare our work against PentestGPT, as the latter is not fully
autonomous.

TABLE IV
NETWORK SCENARIOS USED BY OUR MODEL.

Subnets Hosts OS Services Processes
Tiny 3 3 1 1 1
Small-linear 6 8 2 3 2
Medium-test 5 15 2 5 3
Large-test 10 27 2 5 3

Fig. 10. Performance comparison of RL agents (DQN, CLAP, zero-shot, and
RedTeamBERT) trained and evaluated with the new evaluation metric

Figure 10 shows the performance of our RedTeamBERT
model compared to other RL agents (DQN, CLAP and zero-
shot). We compare them across the four scenarios, using the
mean episodic return computed over five runs. The episodic
return represents the total reward accumulated by the agent
throughout an episode, computed using the new evaluation
metric introduced in the previous section. Note that the DQN
and CLAP models are always trained on the scenarios on
which they are tested, our model was trained exclusively on
separate scenarios with four machines, and the zero-shot model
is not trained on any scenario.

As shown in Figure 10, the DQN only figures out the
path for the tiny scenario, the zero-shot model for the first
two scenarios, and CLAP demonstrates strong performance on
the tiny, small and medium scenarios only. Each time, these
architectures fail when the scenario gets larger.

In addition, both DQN and CLAP are non-adaptive and are
tested on the same network they were trained on. Therefore,
we actually show the results of different DQN and CLAP
models, each one trained on the exact scenario it is tested
on. By contrast, our RedTeamBERT approach is trained on a
database extracted from networks that are distinct from those

used during testing. Therefore, it is the only architecture that
is generalizable.

Performance-wise, our model’s performance is comparable
to that of CLAP and zero-shot for tiny and small scenarios, it
is slightly better than CLAP for the medium scenario, and it
is much better than the both of them for the large one, as it
is the only one that manages to finish it.

TABLE V
RESULTS ON BIGGER SCENARIOS (5 TO 10 SUBNETS).

DQN CLAP Zero-shot Multi-BERT
Success ratio
(at least once) 60% 80% 9% 100%
Success ratio
(total) 39% 63% 5.5% 93.5%

We also conducted additional experiments on random sce-
nario batches to compare the generalization abilities of each
algorithm. We evaluate models on 100 random medium sce-
narios (5 subnets, 15 to 20 machines) and 100 random large
scenarios (10 subnets, 20 to 40 machines). We can observe
in table V that our RedTeamBERT model achieves a much
better success rate compared to DQN, CLAP and zero-shot.
It does not succeed every time however. The reason behind
this is that NASim exploits are made to fail randomly with a
certain percentage. Therefore, an attack may either fail because
the firewall between the machines makes them impossible, or
because we were unlucky when attacking. Both situations are
indistinguishable during simulation, which explains the 6.5%
of runs that fail for our system.

VII. CONCLUSION

In this paper, we presented a robust and adaptive approach
based on four BERT classifiers that outperforms another RL
agent (CLAP) as well as our previous work (zero-shot) across
different scenarios in the NASim environment, according to
our evaluation metrics. In some case, our BERT doesn’t reach
the maximum episodic reward, however it generally obtains
a better episodic reward compared to the other RL agents.
We demonstrated a certain level of explainability, which we
consider to be superior to that of the previous zero-shot
approach.

During some experiments, we observed that our BERT-
based pipeline was not always able to complete the challenge,
as it failed to learn certain conditions present in random
scenarios. In future works, we plan to improve our pipeline
to address this limitation and enable it to handle all random
scenarios. We also aim to extend our BERT architecture to
allow direct training within the RL environment, removing
the need to generate a static dataset beforehand. Additionally,
we plan to test our pipeline on a real cyber range to assess
its performance in practical settings. Finally, we will continue
to study the explainability of our model, as we consider this
aspect crucial for deployment in real-world applications.

Our version of NASim, our dataset, and our model
will be available at the following URL: https://github.com/
silicom-hub/bert-pentesting-paper.



REFERENCES

[1] Gelei Deng, Yi Liu, Vı́ctor Mayoral-Vilches, Peng Liu, Yuekang Li,
Yuan Xu, Tianwei Zhang, Yang Liu, Martin Pinzger, and Stefan Rass.
PentestGPT: Evaluating and harnessing large language models for
automated penetration testing. In 33rd USENIX Security Symposium
(USENIX Security 24), pages 847–864, Philadelphia, PA, August 2024.
USENIX Association.

[2] Christophe Genevey-Metat, Dorian Bachelot, Tudy Gourmelen, Adrien
Quemat, Pierre-Marie Satre, Loı̈c Scotto, Di Perrotolo, Maximilien
Chaux, Pierre Delesques, and Olivier Gesny. Red Team LLM: towards
an adaptive and robust automation solution. In Conference on Artifi-
cial Intelligence for Defense, Rennes, France, November 2023. DGA
Maı̂trise de l’Information.

[3] Kento Hasegawa, Seira Hidano, and Kazuhide Fukushima. Autored: Au-
tomating red team assessment via strategic thinking using reinforcement
learning. In Proceedings of the Fourteenth ACM Conference on Data
and Application Security and Privacy, CODASPY ’24, page 325–336,
New York, NY, USA, 2024. Association for Computing Machinery.

[4] Junjie Huang and Quanyan Zhu. Penheal: A two-stage llm framework
for automated pentesting and optimal remediation, 2024.

[5] Jaromı́r Janisch, Tomáš Pevný, and Viliam Lisý. Nasimemu: Network
attack simulator & emulator for training agents generalizing to novel
scenarios, 2023.

[6] Minjune Kim, Jeff Wang, Kristen Moore, Diksha Goel, Derui Wang,
Ahmad Mohsin, Ahmed Ibrahim, Robin Doss, Seyit Camtepe, and Helge
Janicke. Cyberally: Leveraging llms and knowledge graphs to empower
cyber defenders, 2025.

[7] Jakob Nyberg and Pontus Johnson. Structural generalization in au-
tonomous cyber incident response with message-passing neural networks
and reinforcement learning, 2024.

[8] Jonathon Schwartz and Hanna Kurniawati. Autonomous penetration
testing using reinforcement learning. CoRR, abs/1905.05965, 2019.

[9] Yizhou Yang, Mengxuan Chen, Haohuan Fu, and Xin Liu. Settron:
Towards better generalisation in penetration testing with reinforcement
learning. In IEEE Global Communications Conference, GLOBECOM
2023, Kuala Lumpur, Malaysia, December 4-8, 2023, pages 4662–4667.
IEEE, 2023.

[10] Yizhou Yang and Xin Liu. Behaviour-diverse automatic penetration
testing: A curiosity-driven multi-objective deep reinforcement learning
approach, 2022.

[11] Shicheng Zhou, Jingju Liu, Yuliang Lu, Jiahai Yang, Yue Zhang, and
Jie Chen. Mind the gap: Towards generalizable autonomous penetration
testing via domain randomization and meta-reinforcement learning,
2025.


