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École Navale / Arts & Métiers ParisTech
Brest, France

tristan.averty@ecole-navale.fr

Abstract—Spiking Neural Networks (SNN) are a promising
way of classifying time series, thanks to their energy efficiency
and their ability to model biological temporal dynamics. The
aim of this work is to study the influence of the form taken
by the input data—1D raw signal vs. 2D time-frequency rep-
resentation (spectrogram)—on the performance of a SNN in a
binary classification task of sounds emitted by right whales. After
searching for optimal hyperparameters using a 10-fold cross-
validation, the results highlight that representing time series
as spectrograms significantly improves time-frequency pattern
discrimination and stabilizes network training, demonstrating
the value of integrating a 2D representation for time series
classification thanks to a SNN. These results are all the more
interesting in that SNNs were originally introduced to handle
one-dimensional time signals.

Index Terms—Spiking neural network, binary classification,
supervised learning, LIF neuron, signal processing, spectrogram.

I. INTRODUCTION

Artificial neural networks (ANNs) such as convolutional
neural networks (CNNs) or multilayer perceptrons (MLPs)
have shown a great efficiency for numerous applications,
among them data processing, object recognition and brain
activity modelization [1]. Although designed for this purpose,
these models remain only loosely inspired by the functioning
of biological neurons and differ substantially from the tem-
poral and energetic dynamics observed in the human brain
[2]–[4].

In this context, a new class of so-called neuromorphic neural
networks, spiking neural networks (SNNs), has been gain-
ing increasing interest. Unlike ANNs, which use continuous
functions to enable gradient backpropagation—an essential
building block for training them—SNNs use spikes, adding
a temporal dimension to data processing [1]. Nevertheless,
SNNs remain globally complicated to train, mainly due to
complex neuronal dynamics and the non-differentiable nature
of neuronal discharge operations [2], [5].

Being inherently energy-efficient thanks to their event-
driven impulse mode of operation, SNNs are seen as more
energy-efficient than ANNs, as they replace energy-consuming
weight multiplications with simpler additions [6] — making
them particularly well suited to contexts where energy ef-
ficiency is crucial, such as embedded systems (e.g. UAVs,

AUVs, autonomous cars) [2]. Their ability to process temporal
information in real time [1], [6] also makes them relevant
for onboard intelligence in operational environments, such
as those encountered in naval or aerial systems. To fully
exploit these advantages, SNNs must be implemented on
neuromorphic hardware and coupled with event-based sensors
[5], [7], [8], where computation occurs only upon spike events.
Thus, their efficiency depends more on reducing firing spikes
than on shrinking network size [6], allowing a new generation
of energy-efficient and resilient AI systems.

As the underlying philosophy of SNNs is to model bi-
ological neural processes, they were initially developed for
time series processing [8], in particular to save computational
resources. Nevertheless, recent work in the literature shows
the possible application of SNNs to image classification [9],
thanks to hybrid architectures combining convolution lay-
ers with spiking neurons [2]. This dynamic is now being
extended to more complex tasks, such as object detection,
traditionally performed by architectures like YOLO (You Only
Look Once), a convolutional neural network widely used for
real-time object identification and localization. To this end,
the “spiking-YOLO” model [10] has recently been proposed,
combining the advantages of YOLO with the energy efficiency
of SNNs, demonstrating the feasibility and relevance of SNNs
in performance-constrained computer vision tasks.

These considerations position neuromorphic architectures as
promising candidates for onboard signal analysis in unmanned
maritime, aerial, or land systems. The detection of whale
vocalizations, used here as a representative acoustic task,
illustrates how such architectures can enable real-time and
low-power signal processing in complex and uncertain envi-
ronments, including passive acoustic detection, environmental
awareness, or threat identification scenarios.

The aim of this study is to compare the performance of
a spiking neural network in the context of a task involving
the binary classification of audio recordings. The data used
are 2-second time series, sampled at 2 000 Hz, containing or
not right whale vocalizations, from a contest organized on the
Kaggle platform. More specifically, this study aims to assess
whether SNN performance is influenced by the nature of the
input data: the raw signal (time series) or its spectrogram
(image representation of the signal’s time-frequency content).
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The outline of this article is as follows: section II explains
how a spectrogram is built and how an impulse neural network
works, and in particular how the gradient is back-propagated
in this very specific context. Section III then presents the
database used and the preprocessing applied to it. Section IV
discusses the different spiking neural network architectures
tested. Section V describes and discusses the classification
results obtained. Finally, a conclusion opens the way to a few
perspectives.

II. SPIKING NEURAL NETWORK & SPECTROGRAM

A. Leaky Integrate-and-Fire (LIF) neuron

The Leaky Integrate-and-Fire (LIF) neuron model is one
of the most common model in SNNs [6] mainly due to
its simplicity and its low calculation costs [2], [4], [11]. It
modelizes the membrane potential of a neuron that integrates
inputs (excitatory or inhibitory) over time while gradually
losing energy (hence the term leaky) to reach a resting value
of the membrane potential, like an RC circuit [3] [12]:

τm
dU(t)

dt
= −(U(t)− Urest) +RmI(t), (1)

τm = RmCm. (2)

Equations (1) and (2) governs the LIF model. Equation (1)
describes the temporal dynamic of the membrane potential
U(t) where

• τm is the membrane time constant (in seconds), defined
by the relation (2) as the product of the membrane
resistance Rm (in ohms) and the membrane capacitance
Cm (in farads);

• U(t) (in volts) is the electric potential at time t;
• Urest (in volts) is the resting potential, towards which the

membrane potential tends in the absence of stimulation;
• I(t) (in amperes) represents the injected input current

received by the neuron at time t;
• RmI(t) is the contribution of the input current to the

membrane potential, translated into voltage by Ohm’s
law.

The equation (1) says that, in the absence of an injected
current, the membrane potential decreases exponentially to-
wards the resting potential with a time constant τm. When
a current I(t) is injected, it contributes to modifying the
membrane potential in proportion to the membrane resistance.
When a threshold is reached, the neuron emits a spike and
the amplitude of the emitted spike is subtracted from the
potential (1 in general) [13]. Figure 1 illustrates the evolution
of membrane potential by aggregating input spikes. When this
potential exceeds the threshold set at 0.5, an output spike is
emitted.

This model therefore illustrates the essentials of neuronal
dynamics, without however being as complex as detailed
biophysical models such as Hodgkin-Huxley (HH) [3], [4].
The HH model improves upon the LIF model by providing
a biophysically detailed description of how action potentials
are generated through voltage-gated ion channels, offering a

much closer match to real neuronal behavior [9]. However,
this realism comes at a high computational cost. In contrast,
the Izhikevich model offers a computationally efficient com-
promise between the LIF and HH models [8], [11].
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Figure 1. Evolution of membrane potential leading to the emission of 13
spikes.

B. Supervised learning

SNNs fall into the category of supervised learning al-
gorithms and pose specific challenges due to the non-
differentiable nature of the spikes, which are in a way binary
activation functions [14]. To overcome this, the temporal
backpropagation used for ANNs is adapted, allowing the error
on the network weights to be backpropagated. The result is
called surrogate gradient learning or spike-based backpropa-
gation and replaces the non-derivable spike function with an
approximate continuous function during learning [1] [2] [5].
These techniques make gradient descent possible in SNNs.

Let y = (yi)1≤i≤N be the vector of N true labels (yi ∈
{0, 1} for all i) and ŷ = (ŷi)1≤i≤N be the vector of N
probabilities predicted by the SNN (ŷi ∈ [0, 1] for all i). The
cost function used in supervised learning for a classification
task is generally the cross-entropy :

L(y, ŷ) = − 1

N

N∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi). (3)

As the spikes are non-differentiable functions, to apply
optimization by gradient descent (i.e. backpropagation), the
Dirac distribution S(U) modeling a spike is replaced by a
continuous function σ(U), called surrogate, with a locally non-
zero derivative (e.g. sigmoı̈d, bounded ReLU, ...) :

∂S(U)

∂U
≈ ∂σ(U)

∂U
. (4)

The approximate backpropagation of the gradient then be-
comes possible using the chain rule [6]

∂L
∂w

=
∂L
∂ŷ

× ∂ŷ

∂σ
× ∂σ

∂U
× ∂U

∂w
(5)



where w is an arbitrary weight of the SNN.
The activation function plays a crucial role in a neural

network, as it introduces the non-linearity required for learn-
ing. To make gradient backpropagation possible, the surrogate
function σ used here is the variable-slope fast sigmoid function
defined by

σs(x) =
x

1 + |sx|
(6)

where s > 0 is an adjustable slope factor. Figure 2 illustrates
the fast sigmoid function σs(x) for different values of s,
as well as its derivative. The greater the slope, the more
the function resembles an impulse. However, this increase in
slope is associated with an increasingly steep and localized
derivative, which can make learning unstable. This trade-
off between expressiveness and stability must therefore be
carefully considered when choosing the slope [15].
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Figure 2. Fast sigmoid function and its derivative for different values of slope.

C. Spectrogram

In order to evaluate whether, in the context of a binary
classification task, the performance of an SNN is influenced
by the nature of the input data, we need to obtain a 2D rep-
resentation of the audio signal. For this reason, we use in this
article the spectrogram, the most widely used time-frequency
representation. The spectrogram visualizes the evolution of
a signal’s frequency components over time. It is based on
the Short-Time Fourier Transform (STFT), which consists of
slicing the signal into short-duration segments using a sliding
window that weights the signal to reduce the appearance of
secondary lobes in the Fourier transform [16]. The Fourier
transform is then applied to each of these segments. Formally,
for a discrete signal (x[n])0≤n≤T−1 of T samples, the STFT
is given by

X[n, k] =

T−1∑
m=0

x[m]× h[n−m]× e−j2πkm/Nfft , (7)

where h[·] is the analysis window (the Hamming window is
used in this work), Nfft is the total number of points (i.e.
the number of frequencies) of the Fourier transform and k is
the frequential index. This transform calculates the spectral
content of the signal around time n. Spectrogram resolution
depends on several parameters : the number of frequencies
considered Nfft determines the frequency resolution and for
better temporal resolution, it is also possible to overlap the
sliding windows by a number of points Noverlap.

III. DATABASE & PREPROCESSING

A. Database source and structure

The database used comes from the “Whale Detection
Challenge” hosted on the Kaggle1 platform. The data were
provided by Marinexplore and Cornell University and consist
of audio recordings captured via a network of buoys along the
North American east coast. The data present a wide range of
acoustic diversity, including anthropogenic (e.g. marine traffic)
and biological noise, making the detection task particularly
complex.

The database contains 30 000 two-second AIFF recordings,
sampled at 2 000 Hz and annotated in a CSV file according
to the presence (label 1) or absence (label 0) of right whale
calls. The distribution is as follows: 76.6% of recordings are
labeled 0 and 23.4% of recordings are labeled 1. By comparing
a signal labeled 0 with one labeled 1, Figure 3 illustrates the
complexity of the right whale call detection task.
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Figure 3. 1D (raw signal) and 2D (time-frequency) visualization of signals
labeled 0 or 1.

B. Signal processing

Firstly, to improve learning, the database was processed in
such a way as to balance the distribution between the two
labels. Hence, 23.4% of the signals that are labeled 0 are
randomly selected. It corresponds to 7027 time series.

1https://www.kaggle.com/c/whale-detection-challenge

https://www.kaggle.com/c/whale-detection-challenge


The processing applied to the raw audio data begins with
4th order bandpass filtering to retain only the frequency com-
ponents between 100 Hz and 500 Hz (a choice motivated by
biological reasons). Next, a threshold at 1 and 99th percentiles
is applied to limit the impact of extreme values. The signal
is then decomposed into two distinct channels: one containing
positive values, the other negative values. These two vectors
are concatenated and the absolute values are taken to obtain
a positive representation of the signal. This transformation
is essential, as SNNs require inputs between 0 and 1. A
simple normalization between 0 and 1 would distort the energy
dynamics of the signal by assigning an average energy around
0.5 even to a silent signal, leading to saturation of the network
with spikes. Therefore, this method preserves the energy
coherence of the original signal, while partially preserving
the phase information. Each signal is processed individually,
taking into account its own extreme values. Figure 4 depicts
the above-mentioned processing on a synthetic time series.
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Figure 4. Up : Raw synthetic time series / Down : Preprocessed synthetic
time series (separation and concatenation of components)

The processing applied to the spectrograms also includes a
thresholding step at the 99th percentile. This is followed by
filtering of frequencies between 100 Hz and 500 Hz, then
normalization between 0 and 1. Each spectrogram is processed
individually, taking into account its own extreme values.

IV. METHODOLOGY

A. Tools & libraries

The general construction of the neural networks is imple-
mented using the pytorch library. To integrate the spik-
ing character specific to this study’s approach, we used
snntorch, a library specially designed to be used as an ex-
tension of pytorch for spiking neural networks. It provides
adapted modules (spiking neurons, time-coding mechanisms,
etc.) to simulate the discrete-time behavior of this type of
neuron. The scikit-learn library is used for performance
evaluation, notably using the AUC-ROC metric, as well as for
cross-validation. Finally, some processing operations require
signal operations (filtering, spectrogram generation), which are
performed with the scipy module.

B. Spiking neural network architecture

Table I summarizes the architectures of the two considered
networks. The encoding of the data in spikes is made by the
input layers. The static data is thus treated as a direct current
(DC), whose characteristics are transmitted to the first layer of
the network at each time step [3]. The neuron model chosen
is the LIF neuron as presented in subsection II-A.

1D input 2D input
Input layer 8 000 14 175 (105× 135)
Hidden layer 1 2 048 4 096
Hidden layer 2 512 512
Hidden layer 3 64 64
Output layer 2 2

Table I
NUMBER OF NEURONS PER LAYER FOR THE TWO NETWORKS.

C. Hyperparameters optimization

Firstly, a K-fold cross-validation is performed to train
the networks and find the best hyperparameters. As a re-
minder, cross-validation is a statistical evaluation method
used to measure a model’s ability to generalize and thus
optimize hyperparameters while limiting overfitting. Formally,
the database, composed of 14 054 elements, is divided into
K subsets and the model is trained K times: at each time,
K − 1 subsets are used to train the neural network and the
K th is used for validation. Finally, the scores are averaged over
the K validations to obtain the global metric. The following
hyperparameters are set:

• Batch size : 512
• Spike emission threshold : 1
• Initial learning rate : 10−5

• Slope of the surrogate fast sigmoı̈d function : 25
The use of a scheduler such as ReduceLROnPlateau for
training allows to dynamically adjust the learning rate (an
essential parameter of a gradient descent) in response to
performance stagnation on the validation set, measured via
the loss function. Given the complexity of optimization in
SNNs, this adaptation stabilizes learning, facilitates conver-
gence and achieves better performance while reducing the
risk of overfitting. Concretely, the patience of the scheduler
corresponds to the number of epochs where the value of the
loss function can stagnate (i.e. vary by a value below the set
threshold) before the learning step decreases proportionally to
the decrease factor. Thus, the list of set hyperparameters is
completed by those of the scheduler:

• patience : 5 for the SNN with 1D inputs and 3 for
the SNN with 2D inputs

• factor : 0.5
• threshold : 10−4

Finally, a grid-search is performed to find the best combination
of hyperparameters beta (leakage rate of LIF neurons) and
num_step (number of time steps):

• num_step : search among {1, 10, 20, 30, 40, 50}
• beta : search among {0.8, 0.9, 0.98, learnable}



The learnable option means that the beta parameter is
initially set to 0.9 and then optimized during training as a
network parameter.

V. RESULTS & DISCUSSIONS

A. Performance score

The ROC curve (for Receiver Operating Characteristic) is a
curve used to evaluate the performance of a binary classifier.
It consists of plotting the true positive rate against the false
positive rate for different threshold values, the threshold being
set to decide whether the neuron output predicts 1 or 0.
Calculating the area under the curve (AUC) summarizes the
quality of the neural network across all thresholds [17]. The
AUC is particularly interesting because it is independent of
class distribution and the arbitrary choice of a classification
threshold. What’s more, unlike a simple accuracy measure,
it reflects the model’s ability to maximize true positives
while minimizing false positives, which is crucial in sensitive
applications where the cost of errors differs according to their
nature [18].

B. Results

To compare the different configurations tested, the median
of the AUC score on the K-folds was preferred to the mean.
This is because the SNN model has an instability intrinsic to
training that can lead to learning failures on certain folds, as
illustrated in Figure 5. In this context, the mean is sensitive
to these extreme values, while the median provides a more
robust and representative estimate of actual performance.
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Figure 5. Illustration of learning failure on fold 3 when training the
network with 1D inputs with identical hyperparameters (beta = 0.7 and
num_step = 40).

Tables II and III summarize the median AUC scores ob-
tained on the different cross-validation datasets according to
the values of parameters beta and num_step. The best
results are highlighted.

beta

num_step
1 10 20 30 40 50

0.7 0.725 0.746 0.736 0.751 0.759 0.746

0.8 0.726 0.735 0.745 0.738 0.740 0.747

0.9 0.716 0.731 0.729 0.728 0.742 0.742

0.95 0.724 0.728 0.715 0.718 0.740 0.712

learnable 0.727 0.731 0.737 0.738 0.747 0.732

Table II
MEDIAN AUC SCORES ACCORDING TO beta AND num_step

PARAMETERS FOR THE NETWORK WITH 1D INPUTS.

beta

num_step
1 10 20 30 40 50

0.7 0.737 0.920 0.922 0.921 0.911 0.891

0.8 0.648 0.922 0.921 0.925 0.923 0.919

0.9 0.502 0.923 0.925 0.925 0.927 0.918

0.95 0.602 0.922 0.925 0.926 0.926 0.926

learnable 0.500 0.924 0.924 0.926 0.927 0.923

Table III
MEDIAN AUC SCORES ACCORDING TO beta AND num_step

PARAMETERS FOR THE NETWORK WITH 2D INPUTS.

C. Discussion

Performance evaluation was based on the best median
AUC scores obtained from K-fold cross-validation, for each
architecture tested. The best SNN model receiving raw 1D data
(temporal audio signal) achieved a median score of 0.759 with
the optimal hyperparameters beta = 0.7 and num_step =
40. In comparison, the best SNN model taking 2D inputs
(spectrograms) achieves a significantly higher score of 0.927
for beta = 0.9 and num_step = 40. These results clearly
show that the representation of input data has a major impact
on the performance of an SNN. Exploiting the time-frequency
structure of the signal through 2D spectrograms enables the
network to extract discriminating patterns more efficiently,
particularly in an audio classification context. Conversely, 1D
raw data appear to be insufficiently informative for efficient
learning with an SNN.

Beyond performance, learning dynamics reveal clear differ-
ences between the two approaches. The network which takes
1D inputs shows a tendency towards overfitting: validation
accuracy peaks before decreasing slightly, while training ac-
curacy continues to rise. Learning is also unstable, with two
out of ten folds showing no progression (the accuracy stagnate
around 50%), indicating a lack of convergence. In comparison,
the network which takes 2D inputs, shows stable and regular
learning: the accuracy curves for training and validation fol-
low parallel trajectories, with no observable overfitting. This
stability is consistent both within and between folds. These
results confirm that spectrogram (2D input) is better suited
to SNNs, offering both better performance and more reliable
learning for audio signal classification.

Finally, it should be noted that the test dataset was only
provided to contest participants, so we are unable to accurately
compare ourselves with their models, the results of which
are published on the contest website2 and, in some cases,

2https://www.kaggle.com/c/whale-detection-challenge/leaderboard



have been published [19], [20]. However, we must remain
realistic: the results obtained using their methods will certainly
be much better than those obtained with our “simple” SNN
architectures. Nevertheless, the real objective of this work was
to focus specifically on the influence of representations on
performance and training behavior.

VI. CONCLUSION

This work confirms that, for the binary classification of
audio signals by an SNN, a 2D time-frequency input (spec-
trogram) provides both better performance and higher learning
stability than the 1D raw signal. Switching to a time-frequency
representation enables discriminative features to be extracted
more efficiently, leading to an AUC increase of over 0.15. The
performance obtained on the train set can be complemented
by results obtained on a test set.

Although this representation is naturally two-dimensional,
it is vectorized before being injected into the SNN, and
thus treated as a 1D vector. This means that no convo-
lution operation is currently used to explicitly exploit the
local spatial correlations present in the spectrograms. This
limitation raises a potential improvement: the integration of
spatio-temporal convolutional layers could improve network
performance while remaining compatible with the constraints
of deployment on neuromorphic hardware.

In parallel, sample-wise SNNs have been developed and
tested, capable of processing each audio sample step by
step, as well as neuromorphic recurrent loop architectures to
better capture fine temporal dynamics. These approaches, com-
bined with vectorized 2D representation, open up promising
perspectives for enhancing both the robustness and energy
efficiency of SNNs for audio signal classification tasks. Such
properties—real-time operation, low energy consumption, and
temporal adaptability [21]—make these architectures partic-
ularly relevant for future embedded applications requiring
autonomous and resilient perception in complex environments.
Moreover, it should be noted that some recent studies show
that it might be more beneficial to use hybrid ANN (for parallel
processing) / SNN (for event-based approach) architectures for
further energy savings [22].
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par ordinateur. PhD thesis, Université de Lille, 2022.
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