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Abstract—We present a multi-source, multi-target tracking
system for maritime surveillance. This system integrates hetero-
geneous data sources—radar, satellite RF, AIS, EO/IR, sonar, and
EW data—differing in nature, update rate, and accuracy. It is
designed to process both out-of-sequence measurements or infre-
quent data, and data with varying levels of identification, from
non-existing identifiers to strongly attributed sources. The system
operates in real time, even in dense environments with several
hundred concurrent tracks. It combines hypothesis management
techniques, spatio-temporal data structures, and filters tailored
to maritime dynamics. The system’s performance is evaluated
on synthetic data, and preliminary experiments on real AIS and
satellite RF data have shown promising results.

Index Terms—Target tracking; Sensor fusion; Bayesian meth-
ods; Maritime navigation; Multisensor systems; Kalman filters;

I. INTRODUCTION

Multi-target tracking consists in performing two main tasks,
given a set of partial and noisy measurements from one or
more heterogeneous sensors:

o Grouping measurements generated by a same source,
often referred to as a target or mobile. Such groups of
measures generate a set of tracks, with ideally one track
per source. One issue is the presence of sensor false
positives (for instance, clutter). A track is a collection
of spatio-temporally correlated measurements, carrying
potentially an identifier defined at its creation as well
as identification or classification information about the
source. This step is referred to as data association.

o Estimating for each track the position, velocity, and
associated uncertainties over time, based on the partial
and noisy measurements that compose it. This step is
referred to as data assimilation.

These two steps are performed jointly and enable the con-
struction of the Common Operational Picture (COP), i.e. the
trajectories, current positions and velocities, together with
identification and classification information for all mobiles
within the sensors environment.

Multi-target tracking has been an active research area for
several decades, evolving in response to industrial challenges
and the steady increase in available computational power.
The earliest industrial needs emerged in the 1960s around
airborne radar systems, focusing on the detection and tracking
of aircraft and missiles. The first multi-target tracking systems
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were born from the mathematical formalization of the Kalman
filter [1], [2] and probabilistic data association in cluttered
environments [3], as well as the advent of microprocessors.

These techniques matured with the introduction of methods
such as Probabilistic Data Association (PDA) [4], Joint PDA
(JPDA) [5], [6], and Multiple Hypothesis Tracking (MHT)
[7]-[9] for robust data association and clutter handling, along
with the Extended Kalman Filter (EKF) [10], [11] to handle
nonlinear models. These approaches found applications in de-
fense systems, in particular in combat systems and command-
and-control (C2) architectures. Over time, their robustness and
tracking accuracy were improved through techniques such as
the Ensemble Kalman Filter (EnKF) [12], [13], Interacting
Multiple Models (IMM) [14]-[16], and Particle Filters and
Sequential Monte Carlo Methods (SMC) [17]-[19], enabling
the tracking of maneuvering or evasive targets and the use of
incomplete or imprecise data.

More recently, a new probabilistic paradigm based on Ran-
dom Finite Sets (RFS) has emerged for describing the multi-
target tracking problem [20]. This makes it possible to describe
the tasks of data association and data assimilation in a unified
manner within a rigorous and general Bayesian framework,
to control the approximations and assumptions made in the
modeling, and to state and prove optimality results. It led to
algorithms such as PHD [21], [22], CPHD [23] and Multi-
Bernouilli [24]-[26] filters, particularly suited to high-noise
environments. In parallel, tracking algorithms coupled with
raw signal processing [27]-[29] —often leveraging recent
advances in machine learning (e.g., computer vision, point
cloud analysis [30]-[33])—have been developed to address
video, lidar and radar tracking challenges in domains such
as Advanced Driver Assistance Systems (ADAS), autonomous
driving, and autonomous navigation or decision-making for
drones.

This paper addresses the problem of multi-source, multi-
target fusion for maritime surveillance. Relevant applications
include, but are not limited to: infrastructure monitoring (e.g.
ports, offshore platforms), Exclusive Economic Zone (EEZ)
surveillance by coast guards, generation of a common op-
erational picture (COP) from onboard ships or drones, or
more generally, within a network of distributed sensors and
effectors. The system ingests heterogeneous data sources, such
as AIS, radar, satellite RF, EO/IR, sonar, and EW data.



The primary challenges lie in handling (1) intermittent,
irregular data with highly variable transmission delays, and
(2) a large number of simultaneous targets (hundreds to
thousands). Data intermittency—such as a vessel becoming
undetectable for hours after disabling its AIS—requires the
ability to maintain track continuity using large-scale behavioral
models. Traditional velocity diffusion models (e.g. random
acceleration) perform adequately with high-frequency updates
(e.g. every second) but struggle to produce realistic presence
probability estimates over longer time horizons (tens of min-
utes to hours) without measurements.

Highly variable transmission delays—such as satellite data
becoming available several hours after acquisition—require
the ability to ingest lukewarm data, often arriving out of
sequence with respect to their acquisition time, with delays
of up to several hours. Lastly, source heterogeneity requires
the assimilation of measurements with diverse characteristics
and varying levels of kinematic and identification content.

We propose a multi-source, multi-target tracking system that
addresses these challenges through several original compo-
nents:

« A behavioral model for targets, capable of estimating re-
alistic presence probabilities over a time period spanning
several hours;

o A spatio-temporal KD-tree data structure enabling effi-
cient retrieval of relevant tracks and time points for as-
similating measurements, including out-of-sequence ob-
servations;

o Measurement likelihood models that account not only for
kinematic parameters but also for various levels of iden-
tification features (e.g. RF signatures, MMSI identifiers).

The remainder of the paper is organized as follows. Section
II gives an overview of the sensors and data that can be
involved in maritime surveillance applications, describes real-
world scenarios in which the system has been tested and details
the synthetic data generation process used for development and
quantitative evaluation of the system. Section III introduces
notation sand definitions, and gives a detailed presentation of
the algorithmic components. Section IV focuses on results and
performance metrics of the tracking system. Finally, section V
concludes with a discussion and outlines directions for future
works.

II. SENSORS AND DATASETS
A. Sensors and data for maritime surveillance

1) Sensors: A wide range of heterogeneous sensors can be
deployed for maritime surveillance applications. Each provides
complementary information, differing in coverage, precision,
update rate, and robustness to adverse conditions.

o Global Navigation Satellite Systems (GNSS). GNSS
receivers (such as GPS, Galileo, GLONASS or BeiDou)
provide precise latitude, longitude, speed, and heading
directly from the vessel instruments themselves. Their
advantages include high accuracy (a few meters) and
global coverage. However, GNSS is a cooperative signal.

It requires the vessel to report its position, and it is vul-
nerable to spoofing, jamming, or intentional deactivation.
Radar. They provide all-weather, day-and-night detection
of vessels, with typical ranges from a few nautical miles
(X-band navigation radars) to hundreds of nautical miles
(long-range coastal or over-the-horizon radars). Their
main characteristics include high update rates (seconds),
good range accuracy, and medium angular resolution.
However, radars are sensitive to sea clutter and multi-
path, and may generate false alarms, particularly near
coastlines or in heavy sea states.

Automatic Identification System (AIS). AIS is a co-
operative system where vessels broadcast their identity,
position, speed, and other navigational information. Its
main advantages are the richness of identification data
and the high accuracy of reported positions. Limitations
include voluntary deactivation, spoofing, delayed trans-
missions via satellite relay, and incomplete coverage in
dense traffic or remote areas.

Satellite RF Sensors. Passive RF payloads on satellites
can detect and geolocate maritime transmissions such
as AIS, VHF, or radar emissions. They offer wide-area
coverage (regional to global) but with low temporal res-
olution (hours between revisits) Some limitations include
high transmission delays and relatively coarse geolocation
accuracy compared to terrestrial sensors.
Electro-Optical (EOQ) Cameras. EO systems provide
high-resolution imagery in the visible spectrum, enabling
fine-grained classification (ship type, behavior) and sit-
uational awareness. They are limited by weather and
daylight conditions, and typically offer a narrower field
of view compared to radar.

Infrared (IR) Sensors. IR sensors detect thermal emis-
sions, allowing target detection and recognition at night or
in reduced-visibility conditions. Their range is generally
shorter than radar, and performance is strongly affected
by atmospheric conditions (humidity, temperature gradi-
ents).

Electronic Warfare (EW) Antennas. EW sensors detect
and classify radar or communication signals emitted by
vessels. They provide valuable identification cues and
operate passively, without revealing the surveillance sys-
tem. However, their performance depends on the emission
behaviors of the target and is then limited in silent or
emission-controlled environments.

Active Sonars. Active sonars transmit acoustic pulses
and analyze the returned echoes to detect underwater or
surface targets. They provide range and bearing measure-
ments with relatively high accuracy and are particularly
effective in submarine detection. Main limitations are
their limited coverage compared to passive arrays, suscep-
tibility to environmental conditions (e.g. thermoclines),
and the fact that emissions can reveal the presence of the
surveillance platform.

Passive Sonars. Deployed from fixed buoys, coastal
arrays, gliders or naval platforms, passive sonars de-



tect acoustic signatures of vessels and submarines. They
provide bearing-only measurements with potential long
detection ranges in favorable propagation conditions.
Limitations include strong dependence on the underwater
environment and difficulty in resolving multiple targets.

o Human Intelligence (HUMINT). Reports from coastal
patrols, aerial assets, or civilian observers can comple-
ment technical sensors. They provide flexible and context-
rich information but are irregular in time and highly
heterogeneous in reliability.

The core of our tracking system is designed to be sensor-
agnostic and be able to operate with data from all of the
sensors listed above. To tackle the issue of the variety and
heterogeneity of the raw data, and the difficulty therefore to
feed them directly to the tracker, we develop and make use
of so-called factical data. The idea is to provide a unified
blueprint for information required by the tracker, and easily
extracted from raw data. Integrating a new sensor therefore
only requires specifying its measurement model, i.e. the tac-
tical data it produces and the associated uncertainty. These
measurement models are interchangeable components within
the tracking system, used both for computing measurement
likelihoods and for the filter update step (see Section III).

2) Tactical data: Tactical data are a unified blueprint for
processed data, containing target detections and contain (pos-
sibly partial) information on position and velocity, as well
as identification and classification attributes of the target. An
example of tactial data from a raw data would be a raw image
(e.g. radar, sonar, or video) that would require preprocessing
to extract relevant detections. Following is a short description
of such a blueprint:

« Position data: latitude, longitude, range, bearing

o Velocity data: heading, speed, radial velocity

o Classification data: electromagnetic or appearance signa-
ture, size, type, track ID, public ID

The capabilities of each sensor are summarized in figure 1.

GNSS | RADAR | EW | ACTIVE | PASSIVE | EO/IR | AIS | SAT RF [ HUMINT
SONAR [ SONAR

Lat/lon | v V|,
Bieaing vViviv v |V (v)
Range v v v (V)
Heading v v (v)
Speed v v ()
Radial
velocity v \/
Signature v v v
S (v) (v) [(v)|) (v)
Type (v) |V (v)
Track Id \/ (v)
Public Id v

Fig. 1. Capabilities provided by heterogeneous sensors for maritime surveil-
lance. Checkmarks indicate typical availability; parenthesized checkmarks
denote indirect/conditional availability.

B. Real world experimental cases

The system was tested on real data in two contexts:

¢ In real time, during the Dronathlon challenge organized
by the French Navy. The setup included a USV equipped
with a navigation radar, an AIS receiver, and an electro-
optical suite, as well as an AUV equipped with a camera.
The tracking system fused AIS streams, radar detections,
video detections, and navigation information from the
drones (MAVLINK). The operational area was limited
in size (a few kilometers in radius) and restricted to
challenge participants only, resulting in a relatively small
number of entities to detect.

« Offline, on historical AIS data and satellite RF detections
in the Gulf of Guinea. These data covered an area of
several hundred kilometers in radius with several hundred
vessels navigating simultaneously. Three satellite passes
(one every 24 hours) were available.

These real-data experiments provide only a qualitative eval-
uation of the system, since omniscient ground-truth infor-
mation on the operational situation was not available. It is
therefore essential to quantitatively assess system performance
on synthetic data, for which the ground truth is known. This
is the focus of the following subsection.

C. Synthetic data

The generation of synthetic data is essential for the devel-
opment of a tracking system. It offers several advantages:

« Scenario control: number, type, and trajectories of targets,
as well as the type and performance of available sensors.

e Omniscient ground-truth knowledge: enabling rigorous
evaluation of tracking system results.

o Mass generation of scenarios: allowing the study of
parameter impacts such as noise level, false-positive rate,
transmission delays, etc.

To generate synthetic data, we used a proprietary simulator,
whose main characteristics are described below. The simulator
relies on the Godot 3D game engine, which provides numerous
utilities for estimating line-of-sight (ray casting), defining
physical behavior laws, and handling 3D terrain models.

1) Simulated sensors:

o AIS. AIS messages include position information ex-
pressed in latitude and longitude (with Gaussian mea-
surement noise of standard deviation 20 m) together
with speed and heading, affected by Gaussian noise
with standard deviations of 1 knot and 5°, respectively.
Each message also carries the MMSI identifier, which
is a persistent and unambiguous identifier of the source.
Vessels broadcast AIS messages on average every 5
seconds, with a random transmission delay between 0 and
5 seconds. When a vessel is stationary, the emission rate
decreases to one message every 5 minutes. Vessels may
probabilistically disable AIS transmissions for random
durations of up to 6 hours.

« Radar. Radar detections consist of distance (with multi-
plicative Gaussian noise of 0.5% standard deviation) and



azimuth (with Gaussian noise of 1.5° standard deviation)
for all targets within the radar detection range. The radar
performs one full revolution every 10 seconds. False neg-
atives (missed detections) occur with a given probability,
while false positives (spurious echoes unrelated to any
real target) are generated uniformly across the coverage
area, also with a given probability per revolution. The
radar may attach an ephemeral identifier (tracklet) to
detections, modeling the presence of an internal tracking
system.

Fig. 2. Simulator user interface, with graphical view of the theater and
graphical outputs of a radar sensor

2) Entities and behavior laws: Three categories of entities,
each with specific behavior models, are included:

o Civilian. Pleasure craft operate in shallow waters
(bathymetry between 10 m and 100 m), following random
trajectories at speeds between 2 and 25 knots.

o Fishing vessels. Fishing boats depart from their home
ports, transit to fishing grounds at depths greater than
200 m, and then perform random movements within a
restricted one-nautical-mile radius area at speeds between
2 and 6 knots for several hours (fishing operations) before
returning to port.

e Merchant ships. Merchant vessels perform transits be-
tween ports within the theater (or exit points) selected
randomly, cruising at a constant speed of 20 knots, except
when approaching ports, where they reduce speed.

3) Scenario and test dataset: Using the simulator, we
generated one dataset to evaluate the tracking system. The
results are presented in Section IV. The test scenario represents
the case of some coastal surveillance with a 10 km range radar
(without an internal tracker) and AIS data. The theater covers
a 70 by 60 nautical-mile area, includes six ports (serving as
departure and arrival points for fishing and merchant vessels)
At any given tim, around 200 active entities are in navigation.
The dataset consists of 4 hours of simulation. In addition to
the tactical sensor data, ground-truth positions, velocities, and
identifiers of all targets are recorded to enable quantitative
evaluation of tracking performance.

III. METHODS

A. Definitions and Overall Operation

The main objective of the system is to track entities, that
is to make available in real time to the user their position,
velocity, and potential metadata (typically, identifiers), and the
amount of certainty regarding those intel (quality of data used,
noise estimation, precision of the underlying algorithm...).
The available information from those entities comes from
sensor measurements, which are by nature heterogeneous,
potentially delayed, noisy, and so on. The system feed on those
measurements and fuse them in a smart way to recover only
the needed information.

Our system relies on Targets and Tracks to do so: a Target
mimics a real entity, via its metadata; and a Track represents
the kinematic state of a Target. We will see in the following
that one Target may have multiple Tracks associated to it at
one given time, using hypotheses. The design of our system
is then twofold:

« Data Association — assigns a measurement to a Track,
possibly creating a new one.

o Track Estimation — estimates a Target’s position and
velocity, with some confidence scores regarding the esti-
mation.

These two points are highly connected, as Data Association
influences the next Track estimations, and track estimation is
used to compare Tracks and data.

Data Association is based on a Multi-Hypothesis Tracking
(MHT) approach. One hypothesis represents a possible inter-
pretation of the observed data, assuming specific associations
between measurements and existing Tracks. Multiple hypothe-
ses must be maintained, especially when there is ambiguity
about the assignment of a measurement to a Track. The idea
is to delay the choice of the “correct” association until future
measurements help resolve the ambiguity.

Track Estimation relies on Bayesian inference techniques
to estimate the Target state (position, velocity, and associated
uncertainties) from partial and noisy measurements. These
techniques use a stochastic motion model (i.e. a prior on
the Target’s dynamics and behavior) along with models for
each and every one existing sensors. The Extended Kalman
Filter (EKF) performs this estimation in the case of Gaussian
uncertainties on both motion and measurement noise.

The system maintains a set of Targets, Tracks, and hy-
potheses. Intuitively, a hypothesis is a proposed description of
reality, containing a set of Targets, each with a defined state.
A Track is a mathematical object that characterizes a Target’s
state and ensures its temporal continuity.

Formally:

o Let {M;,Ms,...,M;} denote the set of Targets.

o Let {T1,T5,..., Ty} denote the set of Tracks.

o Let {Hy, Hs,..., Hg} denote the set of current hypothe-
ses.



Targets form a partition of the Tracks (i.e. a Track belongs
to exactly one Target):

Mi:{ﬂlaﬂ25"'}7 {T17T27"'7TJ}:UMi'

The Tracks {T;1,T;o,...} represent the Target M; in the
different description of the reality carried by the hypotheses.
A hypothesis is a set of (Target, Track) pairs:

Hy, = {(M;n, Tjn)}

where T, € M;, and all M, are distinct. A hypothesis
defines the set of Targets present and the Tracks that represent
them. Each hypothesis has a score Sy, interpreted as the log-
likelihood of the hypothesis.

The system ingests data frame-by-frame, where a Frame
is a set of measurements {z1,z22,...,2,} from a single
sensor, assumed to originate from different Targets. A Frame
is a way to make unity in a world of chaos: where the
data comes from several, different, heterogeneous, delayed,
noisy sensors, a Frame represents a batch from one sensor
and as homogeneous as possible (with respect to time and
some potential hyperparameters). This allows for fine-grained,
sensor specific and time-wise analysis of a batch of Data,
improving greatly the fusion and uses of the data.

Data fusion proceeds through:

1) Preselection of relevant Tracks

2) Estimation of Track positions at the measurement time
3) Computation of association likelihoods

4) Determination of the best associations

5) Update of hypotheses and Tracks

B. Detailed processing

1) Gating and Preselection of Relevant Tracks: Incoming
measurements allow the system to preselect relevant Tracks,
that is the most likely to be associated with the measurements.
Tracks that cannot explain any measurement with sufficient
certainty are discarded. This greatly reduces the computational
complexity of the following steps.

This selection is done by computing distances between
measurements and Tracks, keeping only those within a gating
threshold derived from the sensor and motion models. To
perform this efficiently, a KD-tree data structure is used to
retrieve the nearest Tracks in logarithmic complexity.

2) Motion Model and Position Estimation: Each Track
estimates the Target’s position at any time using a motion
model and Bayesian filtering (EKF).

We introduce an original motion model adapted to maritime
dynamics over long time horizons: A Target has a probability
A-dt of changing heading and p-dt of changing speed during a
time interval dt. As dt — 0, the number of heading and speed
changes follows Poisson distributions with parameters A and
1 respectively. When a heading change occurs, the increment
is drawn uniformly from [—/2,7/2]. When a speed change
occurs, the new speed is drawn uniformly from [vUmin, Umax]-

The first and second moments of the state vector
(z(t),y(t),v(t),0(t))—where x(t) and y(t) are Cartesian

coordinates, v(t) the speed, and 6(t) the heading—can be
computed analytically, yielding a Gaussian approximation of
the stochastic dynamics, compatible with an EKF.

3) Likelihood Computation: Measurement-to-track associ-
ations are based on an association cost combining kinematic
proximity and identification information.

Kinematic proximity is computed from the predicted Track
state at the measurement time, with the sensor model providing
the log-likelihood.

Identification information is used to refine this score. Iden-
tifiers may be:

¢ Strong/unambiguous: MMSI, radar track ID, combat sys-
tem track ID, ...

o Partial: RF signature, visual features, ...

o Absent: basic radar, ...

Identifiers may be persistent or change over time. The diversity
of cases justifies the need for sensor-specific exploitation
strategies and the careful design of Frames.

4) Association: For each hypothesis Hj, an association
cost matrix Cj; is built, where ¢ indexes measurements and
7 indexes Tracks in Hy.

From this matrix, the best global association functions f are
computed, with f(i) giving the Track index for measurement
i, ensuring f(i) # f(i') for ¢ # 4. The best associations

minimize:
Ly = Cis)

They are computed using the Jonker-Volgenant (JV) algorithm
and Murty’s algorithm.

5) Update: The best associations for each of the K hy-
potheses are combined to form the new K best hypotheses.
Specifically, we determine the K pairs (k, f) minimizing
Sk + Ly, where k is the current hypothesis index and f is
a global association for that hypothesis.

These pairs define the new hypotheses and update the
Tracks. For (k, f), let Hy, = {(M;n, Tj)} be the Target-Track
content of hypothesis k. All Tracks T}, are updated using the
EKF update step with the measurement assigned to j, by f.

C. Cleaning up and Outputs

As we said at the beginning of this Section, the goal of the
Tracker is to output the states of the tracked entities. The core
algorithms of our Tracker produce many Tracks and Targets,
often more than the “real” number of entities. To maintain
those numbers in check and not overwhelm the end user, our
Tracker has several way to clean up Tracks:

o Confirmation: a Track is said to be confirmed if it
contains some signed data, or enough unsigned data ;
an unconfirmed Track is discarded.

« Activation: a Track not receiving data for more than some
threshold defined in advance is put to sleep. This avoids
Track with too much uncertainty on their state, which
could attract too many sound data from other entities.



IV. RESULTS

Simulated data and the tracker described in Sections II and
IIT were used to obtain the following results. A Tracker such
as the one designed and studied here may be analysed and
studied via various methods. We focus here on two of them:
classification tools and trajectories evaluation.

In Subsection IV-A we study our Tracker as a classifier
regarding the Data Association process. One advantage using
simulated data over real data is the knowledge of the ground
truth, via the GPS and medatadata of each entity. As a Track is
associated with only one Target, which is defined by a unique
set of metadata (in the present situation: AIS metadata), we can
pass on the "truth” from the the data to the Tracks themselves.
A Track is said to be the entity ; if it contains AIS data
from the entity j. We can then say if a radar data has been
correctly associated to the right Track or not.

In Subsection IV-B we study our Tracker through Tracks
as whole: does one Track reproduces with high precision the
path of the underlying entity? To simplify here the analysis,
we compare only Tracks associated with signed (AIS) data,
meaning, we already know which entity to compare to.

We partition all Tracks produced by the Tracker as follow,
using in particular the confirmed/unconfirmed distinction ex-
plained in the previous Section:

« Signed Track: is confirmed and contains signed (AIS)
data.

o Ghost Track: is confirmed but lacks identifier.

o Unconfirmed Track: is unconfirmed.

In a real situation, a Ghost Track could be for instance
a jet-ski, a drone, or any object without identification (as a
malicous or not intent). In our dataset, all entites are signed
thanks to AIS metadata, hence no Ghost Tracks should exist
if our Tracker were perfect.

A Track is considered pure relatively to one Sensor if all
data from the Sensor associated to the Track comes from only
one entity.

A. Data Association analysis

We focus here on the quality of the radar data associations.
The AIS data association is automatically perfect, as we
assume here a high confidence on the AIS metadata (i.e. no
spoofing or other techniques).

Radar data are twofold: echoes from actual entities, and
false positive like echoes from birds, coastlines or waves. In
our dataset, there are 26131 echoes from entities, and 11 false
positive. As explained in the previous Section, false positive
of the radar should directly be associated with an unconfirmed
Track. Finally, a radar data from entity j should be associated
to the Track j ; several type of errors may occur: association
to another signed Track, or a Ghost Track, or an Unconfirmed
Track. Table I sums up the discussion.

Table II presents the distribution of signed, unconfirmed,
and ghost tracks, along with other statistics.

Signed 5 | Signed £ | Ghost | Unconfirmed
radar from j True False False False
false positive False False False True

ABLET
TRUTHNESS TABLE
Signed | Ghost | Unconfirmed
Count of Tracks 601 57 18
Count of pure Tracks 532 49 16
# Radar 25607 511 24
# correct Radar 25397 0 11
TABLE T

DETAILS OF TRACKS

The Table I allows to compute for instance the (global)
accuracy of our Tracker regarding radar data association:

25397+ 0+ 11
25607 4 511 + 24

Though the accuracy is a very classic metric for classifiers,
in our case a more detailed analysis is necessary to understand
how the Tracker fails.

Signed Tracks comprise a total of 601 tracks, of which
88.5% of are pure, and contained most of the radar data (98%
total). The accuracy is as high as 99%, meaning radar data
associated to Signed Tracks are almost always associated to the
right Signed Track. Some entities generated multiple tracks,
typically for entities remaining in ports for some time. This is
a byproduct of the deactivation of Tracks as explained in the
previous Section (see Figures 3 and 4 for an example of an
entity tracked by two tracks).

=97.2%

acc =

75750 zToulon

Fig. 3. First part of an entities tracked by two tracks (with red : tracker
output; purple : radar input and blue : GPS ground truth)

Unconfirmed Tracks account for 18 tracks in total and
less than 0.1% of the radar data. Eleven of these correspond
to false-positive radar data points, resulting in 11 pure, un-
confirmed Tracks, meaning all unsound radar data have been
correctly discarded as unconfirmed Tracks.

Ghost Tracks amount to 57 in total, comprising 511 radar
data points (1.9% of all radar data). Among these, 49 were
classified as pure, representing 424 radar data points, while the
remaining eight accounted for 87 points. Of particular note,
498 out of these 511 radar data points originated from the
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Fig. 4. Second part of an entities tracked by two tracks (with red : tracker
output; purple : radar input and blue : GPS ground truth)

three entities that had deactivated their AIS while in motion,
thereby simulating malicious behaviour; however, they were
still detected by the radar sensor during this AIS interruption.
Indeed these ghost tracks contain unsigned data and are used
to raise an alert for the end user.

Finally, the tracker was run for 45 minutes in order to
assimilate four hours worth of data (see II-C for input data
details).

B. Trajectories analysis

As a complement to the previous analysis focused on Data
Association, this Subsection focuses on the study of trajecto-
ries, comparing Signed Tracks to the path of the corresponding
entities.

To this end we use Trajectopy, a python module dedicated
to trajectories comparison [34]. A spatio-temporal matching
procedure is apply to select the GPS points of the entity’s
path that best correspond to the associated Signed Track
trajectory. The Absolute Trajectory Error (ATE) is then com-
puted, providing metrics that describe the similarity between
the predicted trajectory and the ground truth. The three most
relevant ATE metrics are used : the minimum, median, and
maximum position deviation between the tracker output and
the ground truth, in meters. Table III presents the minimum,
median and maximum values of Signed Tracks for the three
ATE metrics.

ATE Metrics Minimum | median | Maximum
Minimum position deviation [m] 0.05 1.0 48.8
Median position deviation [m] 8.9 30.6 65.3
Maximum position deviation [m] 25.1 116.8 3811.9
TABLE TIT

ABSOLUTE TRAJECTORY ERROR SCORES ACHIEVED ON SIGNED TRACKS
(IN METERS)

Figure 5 complements Table III by detailing the distribution
of the median position deviation, in metres, for signed tracks.
It is of particular importance that most of the signed tracks
exhibit a median position deviation of less than 30 metres.

Based on the aforementioned ATE metrics and scores, a
few tracks were selected. Figure 6 presents one of the best

Median position deviation in meters

Count

Median position deviation [m]

Fig. 5. Median position deviation histogram between tracker prediction and
ground truth

signed tracks in this study, with 100% accuracy on radar data.
The ATE metrics for this track show minimum and maximum
position deviations of 0.21 and 67.7 meters, respectively, while
the median position deviation is less than 11.2 meters.

sur-mer.

Pin-Rolland ~\ /

Fig. 6. Track with 100 % accuracies on AIS and radar data (with red : tracker
output; green : AIS input; purple : radar input and blue : GPS ground truth)

Figure 7 presents one of the worst signed track in this study,
with a data point 3,811 meters from the ground truth. It is
worth noting, however, that this track accounts for only 3
errors in radar data, alongside 232 AIS and 99 radar good
associations.

V. DISCUSSIONS

This work paves the way towards a generic system for
a Common Operational Picture (COP) in the maritime do-
main. It is designed to integrate any sensor delivering tactical
data (that is, kinematic information, optionally enriched with
identification cues) and to scale up to complex, high-density
scenarios involving hundreds or thousands of tracks. Detailed
performance results are provided on synthetic data in a coastal
surveillance scenario involving both radar and AIS streams.
The system has also been tested on real data in two contexts:

e in real time, during the Dronathlon challenge organized
by the French Navy, by fusing AIS streams with video de-
tections and navigation information from friendly drones
(MAVLINK);
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Fig. 7. Track with the highest maximum position deviation (3811 m) (with
red : tracker output; green : AIS input; purple : radar input and blue : GPS
ground truth)

o offline, on historical AIS data and satellite RF detections
in the Gulf of Guinea.

However, several directions remain open for further devel-
opment.

1) On the theoretical side: There are several elements
which may enhance robustness, performance, and applicability
of the current system:

o Incorporating ensemble Kalman filters could improve
track initialization robustness, particularly in bearing-only
scenarios (e.g. passive sonar or EW antennas).

e Leveraging Interacting Multiple Models (IMM) would
allow for better tracking of highly maneuverable targets
(e.g. USVs, jet-skis), especially in infrastructure protec-
tion or onboard COP applications - situations where both
spatial and temporal scales are smaller.

o Developing more realistic sensor models and more robust
track initiation strategies would help mitigate the impact
of spatio-temporally consistent false detections (e.g. false
echoes generated by ship wakes);

o Accounting for extended targets that generate multiple
detections on a sensor’s frame.

2) On the implementation side: Several performance bot-
tlenecks could benefit from parallelization, including filter
prediction and update steps, as well as the computation
of optimal data association hypotheses. The latter is more
delicate and could be addressed by decomposing the bipar-
tite measurement-to-track association graph into connected
components for parallel processing, or by parallelizing the
partitions evaluated in Murty’s algorithm.

3) From an application perspective: Adding an intelligent
analysis layer on top of the tracking outputs would enable
several valuable functionalities, such as:

o Automatically raising alerts when a vessel disables its
AIS, or when a detection cannot be correlated with any
AIS message.

o Detecting data inconsistencies (e.g. spoofing attempts,
sensor biases).

o Computing metrics for each sensor, such as effective
coverage area, consistency index relative to other sensors,
update frequency, and transmission latency.

o Computing metrics for each track, such as classification
uncertainty, historical richness, regularity, and diversity
of contributing sources.

4) In terms of testing and qualification: The system needs
to be evaluated more extensively on both synthetic and real
data. For synthetic data, it is necessary to:

o Implement within the simulator all sensors listed in the
first paragraph of section II.

o Integrate “bearing-only” sensors into the scenario, such
as EW antennas or passive sonars.

o Include satellite sensors with transmission delays of sev-
eral hours, such as satellite RF and satellite imagery.

o Study the tracker’s sensitivity to radar false-positive rates
and to AIS outages.

It would be beneficial to expand the evaluation tools and
performance metrics in order to analyze the tracker’s behavior
in greater detail and to facilitate its tuning across different
application contexts. It is also important to experiment with
and validate the system on real data, involving a wide variety
of sensors and data sources:

o Radar sensors and EO/IR streams, which may produce
large numbers of false positives, sometimes with spatio-
temporally correlated distributions (e.g. ship wakes,
echoes from obstacles or coastlines).

o« EW and acoustic data.

« Fusion of tracks from a combat system or from a tactical
data link network (Link 16 or Link 22).

« Integration of human intelligence reports.
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