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Abstract—We introduce WarNav, a novel real-world dataset
constructed from images of the open-source DATTALION
repository, specifically tailored to enable the development and
benchmarking of semantic segmentation models for autonomous
ground vehicle navigation in unstructured, conflict-affected en-
vironments. This dataset addresses a critical gap between con-
ventional urban driving resources and the unique operational
scenarios encountered by unmanned systems in hazardous and
damaged war-zones. We detail the methodological challenges
encountered, ranging from data heterogeneity to ethical consider-
ations, providing guidance for future efforts that target extreme
operational contexts. To establish performance references, we
report baseline results on WarNav using several state-of-the-
art semantic segmentation models trained on structured urban
scenes. We further analyse the impact of training data envi-
ronments and propose a first step towards effective navigability
in challenging environments with the constraint of having no
annotation of the targeted images. Our goal is to foster impactful
research that enhances the robustness and safety of autonomous
vehicles in high-risk scenarios while being frugal in annotated
data.

Index Terms—Dataset - Annotation - Semantic Segmentation
- Unstructured Environments - Navigability - Data frugality.

I. INTRODUCTION

Modern warfare presents significant challenges for the tac-
tical mobility of mounted combat vehicles. Due to contested
environments (GPS-denied, RF-denied), vehicles such as battle
tanks, infantry fighting vehicles, and autonomous robots can-
not rely on outdated operational pictures to achieve mission
objectives. Intensive indirect fire rapidly alters navigable space
and key-terrain positions, affecting mission feasibility. Tactical
missions now require tight integration of situation awareness
and just-in-time planning. Furthermore, dominant threats (e.g.,
loitering ammunitions, short loops between UAV and artillery,
remote navigation of drones and robots, or improvised explo-
sive devices) further limit navigable space.

These challenges, rooted in the dynamic nature of the
battlefield and the diversity of threats, reveal critical limitations
in current mobility and navigation systems. While autonomous
navigation technologies in modern urban scenes have been
widely developed with rich perception modules owing to finely
annotated semantic segmentation datasets, their applicability
in hostile, unstructured, and destructed combat zones remains

highly constrained. In fact, in these situations, robot auton-
omy or driver assistance will require strong advancements to
navigate efficiently in the no man’s land. Moreover, due to
the lack of geometrically structured shapes, the differences
between two scenes are difficult to assess, even by a human
expert, and limited dataset is available to reasonably master
the learning bias.

A partial workaround to data scarcity consists of leveraging
publicly available information, through techniques such as web
scraping, to gain additional information on the target environ-
ment. However, the incorporation of extra-military data intro-
duces additional risks [1]. In particular, publicly accessible
sources may be subject to intentional manipulation, including
large-scale image tampering or disinformation campaigns [2].

In this paper, we propose WarNav, a war-zone-specific
dataset constructed from the DATTALION repository [3] to
support the development and evaluation of robust semantic
segmentation models for navigability purposes in conflict-
affected settings. The goal is to bridge the domain gap between
traditional urban driving datasets and the operational realities
faced by unmanned systems in hazardous areas. The central
challenges lie in collecting, filtering, annotating, and validating
imagery that is both representative and ethically sourced, while
establishing procedures that ensure the resulting dataset meets
the rigorous standards required for both academic research and
practical deployment. Several techniques have been applied
to meet these criteria for WarNav. Indeed, semantic class
labels tailored to navigation tasks are proposed for the test
and validation sets to enable performance evaluation.

Moreover, we report baseline performances of several mod-
els trained on available annotated datasets without any ex-
posure to WarNav images. Test and validation sets are used
to evaluate them in war-zone challenging regions, by varying
the model architectures, the backbones, and the memory
footprints. We also assess the impact of training data domains,
ranging from urban to rural and from structured to less-
structured environments, on segmentation effectiveness. Re-
sults highlight that each domain offers unique benefits towards
robust navigability in destructed outdoor areas. Finally, we
propose a simple yet effective frugal approach that delivers
strong perception capabilities under resource constraints.



Our contributions can be summarized as follows:
• We introduce a novel and challenging use case for seman-

tic segmentation in war-damaged environments, targeting
frugal autonomous navigation.

• We construct the WarNav dataset via a pipeline of image
selection, filtering, curation, and annotation, with a strong
focus on ethical sourcing, providing practical insights for
future dataset design in extreme deployment scenarios.

• We provide performance on WarNav of diverse baselines
by varying models, backbones or training environments,
and propose an initial frugal approach achieving effective
navigability segmentation in conflict-affected areas.

II. AUTONOMOUS ROBOT USE CASE PRESENTATION

A. Goal and challenges

The advance of autonomous and assisted driving technolo-
gies is highly dependent on the availability of extensive, high-
quality datasets for model development and validation. How-
ever, most of the existing datasets for semantic segmentation
in the context of ground vehicles, such as Cityscapes [4] or
KITTI [5], are predominantly collected in highly structured
and undisturbed urban environments. This limits their rele-
vance and utility when models are deployed in more complex,
degraded, or unstructured real-world contexts. Through this
use case, our aim is to contribute not only with a valuable data
resource for the research community but also methodological
guidance for future efforts in dataset construction for extreme
or atypical operational contexts.

B. Semantic Segmentation of Navigable Spaces

One particularly challenging use case arises in the domain of
military operations, where unmanned ground vehicles (UGVs)
are expected to perform autonomous navigation tasks in en-
vironments characterised by significant destruction, involving
debris, destructed vehicles, shell holes, ruts, collapse of build-
ings, or landslides. In such contexts, accurate perception is
critical for both navigation effectiveness and safety. Specif-
ically, the characterization of drivable areas with obstacles
can be improved using semantic segmentation. Thanks to
semantic retrievals, on-board planners can provide navigation
instructions (maneuvers, paths, trajectories) for automatic path
and mission completion. However, data scarcity is a major
limitation: operational constraints and safety concerns make it
impractical to acquire and exhaustively annotate large-scale,
representative image datasets in these environments.

C. Frugality needs for autonomous navigation with local
situation awareness

Autonomous driving in complex, destructured or unstruc-
tured environment must be robust to changes. In particular
for ground robotic, mission planning and execution must
account for the ability of the autonomous system to interpret
its environment, using semantic segmentation among other
mission information available on board [6]. Moreover, typical
deployment of robotics in military context implies late in-situ

image acquisition. It thus can rely on model adaptation during
mission preparation [7] through three main phases:

• At mission preparation time, where rough data terrain
are available, but not necessarily representative of the
battlespace environment.

• After the first mission execution, where some sparse data
are gathered from the executed navigation plan. This
would correspond to a first major model adaptation.

• During repetitive mission operations, where incremental
model adaptations could be performed thanks to incre-
mental data retrieval.

D. Providing dataset from conflict zones

To address this challenge, we turn to publicly available
resources that offer authentic, situationally relevant visual
content. The DATTALION repository [3] is a prominent exam-
ple, providing visual documentation from Ukrainian conflict
zones, reflecting the diversity and chaos of post-conflict urban
environments. However, directly leveraging such open-source
imagery for machine learning applications presents several
challenges. The imagery is heterogeneous in terms of scene
content and neither curated nor annotated for technical use
cases such as semantic segmentation. Furthermore, issues of
data privacy and ethical use must be rigorously addressed
when dealing with potentially sensitive imagery featuring
vulnerable civilians or recognisable features.

III. WarNav: A BENCHMARK FOR FRUGAL SEGMENTATION
OF NAVIGABLE ZONES IN WAR SCENES

A. DATTALION: a dataset of real war scene images

The DATTALION dataset [3] is a large open-source
multimedia repository documenting the Russian invasion of
Ukraine, launched in 2022. It consists of over 4,000 verified
videos and 20,000 images, along with metadata including loca-
tion, date, source, and type of event (e.g., attacks on civilian
infrastructure, troop movements). The dataset is maintained
by a volunteer-driven Ukrainian initiative and is primarily
intended to support research, journalism, and accountability
efforts related to war crimes and conflict analysis. The dataset
is organized chronologically with monthly chunks. For au-
tonomous vehicle research, only a subset of DATTALION
is relevant. Many images, such as indoor scenes, nighttime
photographs, or close-ups, do not provide useful information
for training perception systems designed for drivable area
segmentation in outdoor daytime environments.

B. Image Selection

We have first performed an initial assessment of the suit-
ability of the DATTALION content for autonomous navigation
zone detection. We have found multiple examples of outdoor
road areas with partially damaged buildings or vehicles. We
also found interesting scenarios such as crop field wildfires
or road blast craters, which would be particularly difficult to
recreate if we had to design a testing area for new image
acquisition.



We then performed a progressive filtering and selection
process. This filtering approach is based on past experience in
artistic image competitions 1 where image quality assessment
is typically performed in a few seconds during the first
selection rounds. This experience has shown that selecting a
few thousand images from a pre-existing repository is feasible
in a reasonable time by a small dedicated team. The use
of automated image preselection, such as Vision Language
Models, was not considered so far, as their robustness in
destructured environment was unknown.

The following methodological steps were undertaken:

• Submission of a data processing declaration in ac-
cordance with the General Data Protection Regulation
(GDPR), specifying the use of encrypted hard drives
and the deletion of image data upon completion of the
selection process.

• Downloading of the DATTALION dataset, retaining only
image files for analysis. All video files and Word docu-
ments were excluded from further consideration.

• Development of a standardized image selection proto-
col, including representative examples of images to be
retained or discarded, based on relevance to research
objectives and image quality.

• Initial filtering of the dataset through exclusion of images
based on the following criteria: nighttime scenes, close-up
object views, indoor settings and building facades without
visible road infrastructure as only outdoor daytime scenes
are relevant for our use case. Images containing blood,
cadavers, or partial blurring were also removed for eth-
ical and bias considerations.. This filtering process was
conducted in parallel by team members, each responsible
for a designated subset of monthly data.

• Manual review of the pre-filtered images to remove
remaining outliers. This step was significantly faster than
the initial filtering, thanks to the reduced volume of
images requiring inspection.

• Partitioning of the monthly image subsets into training
(5354 images from 8 months), validation (100 images
from one month), and testing (100 images from 2 months)
datasets. Note that there is no overlap between the months
represented in the three sets to avoid domain leakage.

It is worth noting that several original images from the
DATTALION dataset are partially blurred. These blurred re-
gions typically correspond to cadavers or individuals whose
identities were likely intentionally obscured for privacy or
ethical reasons. To avoid introducing a potential bias during
training, where a semantic segmentation model might learn to
associate blurring artifacts with the presence of persons, we
opted to discard such images. Conversely, images containing
unblurred yet unidentifiable individuals were retained without
modification, under the assumption that they resemble data
that could be passively captured by onboard cameras of
autonomous vehicles.

1https://www.salondaguerre.paris/

C. Semantic Classes

Based on the intended use case and the availability of
this rich dataset, the set of semantic classes to be annotated
was progressively refined. The following definitions were
ultimately adopted:

• Overlay: Regions containing graphical overlays or an-
notations that were added post-capture. These pixels are
excluded from both training and performance evaluation,
as they do not correspond to real-world scene content.

• Road: Surfaces intended for civilian vehicular traffic,
typically paved with asphalt or similar materials.

• Drivable: Areas that are not formal roads but are deemed
traversable by military 4x4 vehicles (e.g., dirt paths, open
fields).

• Pedestrian: Humans. Accurate detection of this class is
essential for tasks related to safe autonomous navigation.

• Vehicle: Civilian vehicles that are potentially operable.
Obstacle avoidance algorithms would consider them as
potentially non-static obstacles. Damaged or abandoned
car wrecks are excluded from this category.

• Background: All remaining regions are classified as
background, encompassing areas where navigation is not
feasible (e.g., buildings, vegetation, sky, rubble, blast
craters or other static obstacles).

D. Annotation

Even if unsupervised techniques are foreseen to address
annotation constraints, pixel annotation is necessary for perfor-
mance evaluation. This annotation is performed only on valida-
tion (val) and test sets. The training dataset remains completely
unannotated to emphasize the need for unsupervised learning
strategies suited to real-world constraints. In practice, less than
4% (i.e., 200 among 5554) of selected images were annotated.

The annotation process began with an initial calibration
phase during which a small sample of images was annotated
and then discussed to clarify expectations and resolve ambi-
guities. The following annotation guidelines were established
and agreed upon:

• Annotation method: Semantic segmentation was per-
formed by manually outlining regions of interest using
polygons. Each segmented pixel is assigned to exactly
one semantic class; no overlapping segments.

• Obstacle annotation: Small debris or wreckage that
could realistically be traversed by a military vehicle were
not annotated individually. Conversely, blast craters are
generally considered non-drivable and should be explic-
itly labelled as background.

• Surface transitions: Border zones between different
drivable surfaces—such as the interface between as-
phalt and cobblestone or between paved and unpaved
areas—are to be labelled as drivable if they are visually
and functionally navigable.

• Occluded road surfaces: When dense vegetation com-
pletely obscures the underlying ground, the surface con-
dition cannot be reliably assessed. In such cases, the



region must be labelled as background, as no inference
should be made without clear visual evidence.

• Sparse foreground elements: Objects such as tree
branches, leaves, or overhead cables, which do not ob-
struct vehicle motion but may appear in the foreground,
are not annotated.

• Vehicle versus static obstacle distinction: The boundary
between a functional vehicle and an immobile obstacle
can be ambiguous, especially in war-zone imagery. The
chosen criterion is based on potential operability: only
vehicles that appear to be intact and potentially capable of
movement are labelled as vehicle. Severely damaged
vehicles (e.g., burned-out shells, or dismembered car
halves) are treated as part of the background.

All test and validation images were manually annotated
following this protocol. The resulting annotation masks were
saved using the Cityscapes file format [8].

To assess the consistency and reliability of human annota-
tion, a subset of 10 images from the test set was independently
annotated by two additional annotators, resulting in three
distinct annotations per image. The inter-annotator agreement
was evaluated on all pixels: 92.3% of them were assigned
identical labels by all three annotators, indicating a high
level of consistency. However, 7.7% pixels showed at least
one disagreement and only 0.17% pixels were assigned three
completely different labels, reflecting localised interpretation
ambiguities. The mean pixel-wise entropy in the dataset was
relatively low (0.0492), further supporting strong annotation
consistency. Pairwise Dice similarity coefficients were cal-
culated between annotators for each semantic class. High
agreement was observed in classes such as background,
vehicles, overlay and pedestrian with Dice scores
exceeding 0.95 across all annotator pairs. Moderate discrepan-
cies appeared in drivable and road classes, which yielded
lower Dice scores. In fact, these classes may be more prone
to subjective interpretation or boundary ambiguity due to their
close definitions (i.e., zones drivable by a civilian car vs. a 4x4
military vehicle). Nonetheless, these inconsistencies are not
critical for the intended military application, as all affected
areas still fall within the broader category of navigable space
which is our primary concern. The inter-annotator agreement
from this sample will serve as a benchmark for evaluating
the performance of automated semantic segmentation models.
Otherwise stated, we will consider the annotations having the
smaller discrepancy with the two others (i.e., Annotator 2).

Figure 1 illustrates the distribution of pixel classes showing
a strong dominance of the background class, followed by driv-
able areas and roads, which together account for the majority
of labelled pixels. In contrast, pedestrian and vehicle classes
appear significantly less frequently, which is predictable due to
the war context and to their smaller size. Figure 2 illustrates the
region count histogram providing insight into the spatial dis-
tribution and fragmentation of each class. While background
regions remain dominant, classes like pedestrian and vehicles
exhibit a higher number of small, disconnected regions relative
to their pixel count. The similarity in distributions between

the test and validation sets in both histograms indicates good
consistency in annotation quality and dataset structure, which
is crucial for reliable performance assessment.
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Fig. 1. Histogram of number (×107) of pixels per class for the test and the
validation sets of WarNav. When ignoring ‘overlay’, the 5 remaining classes
constitute the so-called L5 setting used in this paper.
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Fig. 2. Histogram of connected regions per class for the test and the validation
sets of WarNav.

E. Dataset Open-sourcing

Selected images and annotations are available on https://
github.com/CEA-LIST/WarNav. It provides DATTALION im-
age names for the different splits and annotation masks for test
and validation datasets. The original images are not shared due
to licensing restrictions.

IV. FRUGAL BASELINES FOR WarNav BENCHMARK

A. wmIoU: A new weighted mIoU suitable for WarNav

Although the mean Intersection over Union (mIoU) is the
standard metric for evaluating semantic segmentation perfor-
mance, it may obscure critical aspects relevant to our specific
use case as it equally considers all pixels. First, since our
primary goal is to ensure reliable navigability, we place greater
importance on accurately segmenting regions closer to the
vehicle than on distant areas. This distinction is particularly
significant for the background class, as it encompasses
both navigational obstacles such as rubble and debris, and
other non-navigable regions such as sky and buildings. In
our context, identifying obstacles within navigable zones is
more crucial than segmenting other background elements,
as they have a more immediate impact on navigation decisions.
Secondly, we argue that accurately segmenting the inner
parts of each zone is more critical than precisely delineating
contours, particularly at the boundaries between road and
drivable areas. To reflect these priorities, we propose a
new weighted mIoU (wmIoU) that accounts for both factors,

https://github.com/CEA-LIST/WarNav
https://github.com/CEA-LIST/WarNav


Architecture Backbone #P(M) mIoU (in %) wmIoU (in %)
Cityscapes(val,L19) Cityscapes(val,L5) WarNav(test,L5) WarNav(val,L5)

DeepLabv3+ [9] ResNet101 [10] 66 76.2 91.2 53.3 46.7
Mask2Former [11] SwinB [12] 104 83.3 93.5 51.4 49.8
SegFormer [13] MiT-B5 [13] 85 82.4 92.7 61.5 58.1

TABLE I
PERFORMANCES OF DIFFERENT APPROACHES BASED ON DIFFERENT BACKBONES ALL TRAINED ON THE CITYSCAPES TRAIN-SET. FOR EACH METHOD,
WE PROVIDE THE NUMBER OF PARAMETERS IN MILLIONS (#P(M)), MIOU RESULTS ON CITYSCAPES VAL-SET CONSIDERING THE L19 AND L5 LABELS

SETTINGS, AND THE WMIOU RESULTS ON THE WarNav TEST AND VAL SETS. BEST RESULTS PER COLUMN ARE IN BOLD.

by weighting the ground truth class label map Cgt with a
weight map W using a Hadamard product [14] (here denoted
◦) such as proposed by [15]:

wIoU =
|(C ∩ Cgt) ◦W |
|(C ∪ Cgt) ◦W |

(1)

where C denotes the predicted class label map. Note that the
final wmIoU score is obtained by averaging the wIoU values
across all classes.

We draw inspiration from this work and adapt it to align
with our objectives. Specifically, we introduce a distance map
D = D1 ◦D2 which incorporates our two criteria:

• We consider the highest non-background pixel pfg as the
horizontal limit between the most critical regions that
contain navigable zones (below) and the less relevant non-
navigable areas (above). To reflect this distinction, we
construct D1 as two piecewise decreasing linear functions
f(a, b) defined by their extrema a, b, assigning greater
weights to closer pixels and especially the more critical
foreground ones (i.e., satisfying p below pfg):

D1(p) =

{
f((0, 1), (pfg, 0.8)) if p below pfg
f((pfg, 0.2), (pmax, 0.1)) otherwise

(2)
• We compute a boundary distance (a.k.a. distance trans-

form) map D2, where for each pixel p, D2(p) is the min-
imum distance to a pixel of a different class normalized
by the maximum value found in its connected component.

The resulting map D is then used to create a weight map
W (p) = eαD(p), to compute a wIoU per class such as pre-
sented in Eq. 1, where α = 0.3 controls the slope decay. This
formulation accentuates regions farther from class boundaries,
prioritizes forefront areas, closer to the camera, and especially
emphasizes foreground pixels. Thus, the influence of distant
background regions, which often dominate the image but are
less relevant for immediate navigation, is reduced.

B. Datasets

In addition to WarNav, we consider three public datasets:
Cityscapes [4] is a commonly used dataset for semantic

segmentation for autonomous driving. It contains 2975 finely
annotated training images, and 500 validation images (val),
all segmented into 19 semantic classes: L19. Notably, the
dataset mainly features scenes from well-structured urban
environments, representing organised and structured cities.

RUGD [16] is a video dataset captured in rural and less
structured outdoor environments, offering more representative

samples for complex rural scenes. The original dataset is
divided into 4759 train, 733 validation and 1964 test images.
We modify this split to 4375 for training, 1240 for validation
(val), and 1841 for testing, to (i) reduce the size of the training
set for better comparability with the Cityscapes setup, (ii)
ensure the inclusion of the class water in the training set,
and (iii) minimize domain leakage across splits. The images
are annotated into 24 possible class labels.

Earthquake-site database [17] (referred to as ‘Earthquake’
in this paper) is a set of images depicting earthquake-related
damage. It was finely segmented into 10 semantic classes such
as every small crack, wreckage, or obstacle is highlighted,
in contrast to WarNav where only bigger obstacles or blast
craters obstructing military vehicle motion are considered.
This dataset includes scenes of both urban and rural environ-
ments, with 686 train and 50 test images.

C. Experiments and results

In this section, we provide several baseline performances
on the test and val sets of WarNav, analysing the influence
of model architecture, backbone size, and training dataset. It
should be noted that none of the models used were trained
using images from WarNav. Instead, we report inference re-
sults from models trained on public annotated datasets. Indeed,
there is an important domain gap between these datasets and
WarNav. The presented results serve as initial baselines and
provide insights into how various model characteristics influ-
ence performance in our specific application setting. Publicly
available chekpoints were used to produce the results in Tables
I and II. For Table III, we employed the official SegFormer
code [13], with minor modifications to the dataloaders to
accommodate the different datasets.

Effect of model architecture: First, we provide in Table I
a comparison between various state-of-the-art segmentation
models all trained on the Cityscapes [4] training set to segment
images into 19 possible semantic classes (L19). We chose
a CNN-based model (i.e., DeepLabv3+ [9]), and two visual
transformer-based (ViT [18]) approaches usually providing
better results: Mask2Former [11] and SegFormer [13]. These
models have different architectures, are based on differ-
ent backbones (i.e., ResNet101 [10], SwinB [12] and MiT-
B5 [13]), and have different memory footprints (see number
of parameters #P(M) in Table I).

For each approach, we report Cityscapes(val,L19): the mIoU
performance on the Cityscapes val set segmented into L19.
These results illustrate the in-domain semantic segmentation
performance as both training and evaluation are conducted
on subsets of the same dataset with consistent class labels.



Backbone #P(M) mIoU (in %) wmIoU (in %)
Cityscapes(val,L19) Cityscapes(val,L5) WarNav(test,L5) WarNav(val,L5)

MiT-B0 3.7 76.3 90.8 56.0 52.3
MiT-B1 13.7 78.5 91.8 54.9 49.8
MiT-B2 27.5 81.0 92.4 55.6 53.2
MiT-B3 47.3 81.7 92.7 58.9 55.2
MiT-B4 64.1 82.7 92.7 60.6 56.4
MiT-B5 84.7 82.4 92.7 61.5 58.1

TABLE II
PERFORMANCES OF SEGFORMER [13] BASED ON DIFFERENT BACKBONES ALL TRAINED ON THE CITYSCAPES TRAIN-SET. FOR EACH MODEL WE
PROVIDE THE NUMBER OF PARAMETERS IN MILLION (#P(M)), mIoU RESULTS ON CITYSCAPES val SET CONSIDERING BOTH L19 AND L5 LABEL

SETTINGS, AND THE wmIoU RESULTS ON THE WarNav test AND val SETS. BEST RESULTS PER COLUMN ARE IN BOLD.

As anticipated, ViT-based methods significantly outperform
DeepLabv3+, with larger model variants achieving higher
mIoU scores.

Moreover, for a better comparability with the WarNav
benchmark, we propose to map each class from L19 to one of
the 5 classes L5 of WarNav as follows (L19 → L5):

• road → road;
• sidewalk and terrain → drivable;
• person and rider → pedestrian;
• car, motorcycle, bicycle, truck, bus and train → vehicle;
• sky, vegetation, building, fence, wall, pole, traffic sign

and traffic light → background.

As explained in Sec. III-C, we omit the overlay class during
evaluation. We apply this mapping to all Cityscapes val predic-
tion and ground truth segmentation maps and perform a new
mIoU over the resulting L5: Cityscapes(val,L5). These values
are higher than Cityscapes(val,L19) due to the merging effect
of fine-grained object classes into broader categories, which
simplifies the task. For example, confusion between poles,
traffic signs, and traffic lights becomes irrelevant when these
are grouped into a single class. Moreover, under this mapping,
the performance gap between the three evaluated approaches
narrows significantly, with only a 2.3 p.p. (percentage point)
mIoU difference compared to a 7.1 p.p. gap with the original
L19 evaluation as even smaller CNN-based models succeed in
performing well on this easier task.

The same mapping L19 → L5 is applied to predictions
on test and val sets of WarNav, which are compared to the
ground truth annotations to compute WarNav(test,L5) and
WarNav(val,L5) respectively, using the wmIoU metric. In fact,
as outlined in Sec. IV-A this metric is more convenient for
WarNav dataset, contrary to other contexts such as autonomous
driving in urban environments. Interestingly, the lightweight
ViT-based segmentation model, SegFormer [13], achieves the
best results on both sets. This could be explained by the fact
that Mask2Former [11] is a panoptic segmentation model dis-
tinguishing not only the semantic concepts but also individual
instances, tending to overfit to specific training instances which
reduces generalization in new domains where visual patterns
differ. Thus, we will use SegFormer [13] in the subsequent
analyses. Note that the gap between the displayed test values
and those obtained using different annotations for 10 images
(see Sec. III-D for details) is always less than 0.3 p.p. wmIoU,
which confirms the consistency of the annotations.

Effect of backbone size: Table II presents a comparative

analysis of various SegFormer [13] backbones, from MiT-B0
to MiT-B5, in terms of model complexity and segmentation
performance with the same evaluation settings. More details
about the computational costs of each model can be found
in [13]. Similarly to Table I, all models are trained on the
Cityscapes train set to segment images into L19. As expected,
increasing the memory footprint leads to improved results,
particularly for Cityscapes(val,L19), where mIoU rises from
76.3% for MiT-B0 to 82.7% for MiT-B4, with MiT-B5 closely
following at 82.4%. When evaluating the coarser 5-class L5

setting of Cityscapes, performance differences become less
pronounced, with all models achieving scores in a narrow
range between 90.8% and 92.7%. This confirms our suggestion
that collapsing fine-grained categories into broader classes
for Cityscapes simplifies the segmentation task, reducing the
performance gap between smaller and larger models.

However, WarNav reveals a larger wmIoU gap between
small and large models driven by the benchmark’s complexity
and the domain gap between the structured cities of Cityscapes
and the severely damaged environment of WarNav . Indeed,
wmIoU scores gradually improve with model size from 56.0%
(MiT-B0) to 61.5% (MiT-B5) for the test set, and from 52.3%
to 58.1% for the val set. Note that results are consistent across
test and val sets for all models, reflecting the reliability of
annotations and the representativeness of the selected images
for the conflict-affected use case.

Effect of training dataset: Since Cityscapes primarily
features well-structured urban environments, models trained
exclusively on Cityscapes often fail to accurately segment
destruction-related elements in WarNav benchmark (see col-
umn 3 in Fig. 3). In this section, we investigate the impact of
training data by using different datasets, representing distinct
types of outdoor scenes, ranging from structured urban settings
to rural and destructed environments.

To ensure a fair comparison between models trained on
different datasets, and since each dataset provides its unique
class labels and definitions, we introduce a unified label set,
L12, consisting of 12 high-level semantic categories (super-
classes). The labels of each dataset are mapped to this common
taxonomy, as detailed in Table IV. Specifically, we retain the
categories road, drivable, and pedestrian from L5

WarNav, but refine the remaining classes as we believe that
combining very distinct semantic concepts during training can
harm performances. Thus, the vehicle category is split into
three classes: car (civilian cars), two wheels (bicycles



Training Data mIoU (in %) wIoU (in %)
Cityscapes(val,L12) RUGD(test,L12) Earthquake(test,L12) WarNav(test,L5) WarNav(val,L5)

Cityscapes [4] 89.1 41.1 52.1 58.8 59.9
RUGD [16] 51.3 71.5 41.9 45.6 44.6
Earthquake [17] 61.2 39.2 73.9 56.0 57.9
Cityscapes+RUGD+Earthquake 87.4 68.7 75.9 64.9 63.9

TABLE III
PERFORMANCE OF SEGFORMER(MIT-B5) [13] TRAINED ON DIFFERENT DATASETS. FOR EACH MODEL, mIoU RESULTS ON CITYSCAPES(val),

RUGD(test) AND EARTHQUAKE(test) CONSIDER THE L12 LABEL SETTING WHEREAS wIoU RESULTS ON THE WarNav test AND val SETS CONSIDER THE
L5 SETTING. BEST RESULTS PER COLUMN ARE IN BOLD, SECOND BEST ARE UNDERLINED.

and motorcycles), and other vehicle (larger vehicles).
The broad background class is further divided into: sky,
vegetation, buildings, road obstacles (obstacles
located on the roadway), side obstacles (objects found
outside the road area), and water.

Note that some inconsistencies were noticed in the annota-
tions of Earthquake. First, grass is inconsistently annotated as
either vegetation or other. As a solution, we relabel
these areas as terrain when they are predicted as such
by the SegFormer(MiT-B5) model trained on Cityscapes L19.
Second, in the original annotation of Earthquake, all types of
vehicles are grouped under a single label. We refine this by
using the same model to pseudo-label individual vehicles into:
car, motorcycle, bicycle, truck, bus, and train.

L12 super-class Cityscapes RUGD Earthquake WarNav

Road road
asphalt
gravel

concrete
road road

Drivable sidewalk
terrain

dirt
sand
grass
mulch

rockbed

terrain drivable

Person person
rider person person pedestrian

Car car vehicle car vehicle

Two wheels motocycle
bicycle bicycle motocycle

bicycle vehicle

Other vehicle
truck
bus
train

-
truck
bus
train

vehicle

Sky sky sky sky background

Vegetation vegetation tree
bush vegetation background

Buildings building building
bridge building background

Road obstacles - log
rock cracks background

Side obstacles

fence
wall
pole

traffic sign
traffic light

fence
container

table
pole
sign

other background

Water - water water background

TABLE IV
MAPPING OF DATASET CLASS LABELS TO A COMMON L12 DEFINITION.

To assess the impact of the training data environments,
we train three SegFormer(MiT-B5) models independently on
Cityscapes [4], RUGD [16] and Earthquake [17], considering
the L12 setting. The mIoU results on the corresponding test/val
sets are reported in Table III. As expected, each model
achieves the highest mIoU on its respective in-domain set, but
exhibits significantly reduced performances on out-of-domain

datasets. These large performance drops, up to 37.8 p.p. on
Cityscapes(val,L12), 32.3 p.p. on RUGD(test,L12), and 32.0
p.p. on Earthquake(test,L12), highlight the substantial domain
gaps between these datasets and the resulting limitations in
cross-domain generalization.

We further evaluate the three models on the test and val
splits of WarNav after performing the L12 → L5 mapping on
the predictions such as detailed in Table IV. Figure 3 illustrates
qualitative results on images from the WarNav test set. The
model trained on Cityscapes performs well in structured urban
scenes (e.g., images 1 and 2), successfully segmenting classes
omnipresent in such images such as vehicles and pedestrians.
However, its performance degrades considerably in rural or
damaged environments, where it struggles to differentiate
between drivable and non-drivable areas and fails to identify
road obstacles and blast craters (e.g., images 3–5). In contrast,
the model trained on RUGD demonstrates better identification
capacities of road and drivable areas especially when con-
fronted with less structured scenes compared to those from
urban autonomous driving settings. Yet, it is less effective
in detecting finer elements such as vehicles, pedestrians, and
small obstacles. Meanwhile, the Earthquake-trained model
yields the best segmentation results in destructed or post-
disaster environments, particularly at detecting road obstacles,
even the finer ones. However, it underperforms in recognizing
vehicles and people due to their limited representation in the
training data.

To leverage the strengths of each individual model, we
train a SegFormer(MiT-B5) model on a combined dataset
comprising Cityscapes, RUGD, and Earthquake, while main-
taining the unified labelling strategy. This simple yet effective
approach yields a model with strong and balanced perception
capabilities across diverse outdoor environments: urban/rural,
structured/destructed. Notably, it performs competitively on
Cityscapes and RUGD compared to single-data models and
achieves the best results on Earthquake, even surpassing
the model trained solely on Earthquake data. Furthermore,
it strongly outperforms all previous models on WarNav, as
shown both quantitatively in Table III and qualitatively in
Fig. 3. Thus, this model took advantage from Cityscapes for
pedestrian and vehicle detection, has better separation abilities
between road and drivable areas thanks to RUGD, and detects
road obstacles, holes and debris learned thanks to Earthquake.

V. CONCLUSION

In this work, we introduce WarNav, a new semantic seg-
mentation benchmark under data annotation frugality, along



Frame Ground Truth Cityscapes RUGD Earthquake
Cityscapes + RUGD + 

Earthquake

Overlay Road Drivable Pedestrian Vehicle Background

Fig. 3. Illustration of the influence of the training datasets. Columns from left to right are: test images of WarNav, their corresponding annotations, predictions
of SegFormer(MIT-B5) trained on Citysapes, RUGD, Earthquake and the combination of the three datasets.

with baseline evaluations to assess navigability in conflict-
affected areas. Our approach begins with the construction
of a dataset by filtering imagery from a publicly available
DATTALION repository [3]. Then, we propose a refinement of
the traditional mIoU metric to better reflect the requirements of
autonomous vehicle navigation in unstructured environments.
Subsequently, we benchmark several baselines on WarNav by
varying architectures, backbones and training datasets without
using any in-situ images during training. Building on these
results, we propose a simple yet effective solution towards
autonomous navigability in hazardous zones, leveraging the
diversity of available annotated outdoor environments. Our
experiments focus on direct transfer of models trained on
other outdoor domains to compare baseline performances. A
promising direction is to employ WarNav training dataset as
a target domain and apply Unsupervised Domain Adapta-
tion (UDA) techniques for semantic segmentation [19], [20],
thereby improving model adaptation while remaining frugal
in annotations. While our study provides initial insights and
solutions to enhance unmanned vehicle safety in unstructured
terrains, we believe UDA-driven approaches could further
improve performance. Ultimately, we hope this work will
foster research in such specific environments by providing

open datasets and developing frugal and robust AI models.

VI. BROADER IMPACT

WarNav represents a semantic segmentation dataset of war-
affected environments, offering a first benchmark towards
developing autonomous driving systems in such challenging
domains. However, the methodologies used to construct this
data introduce several important considerations that merit
further investigation. First, the scraping of public multimedia
repositories introduces potential vulnerabilities, such as the
risk of malicious remote server image manipulation. Nonethe-
less, this approach significantly improves researcher safety
by eliminating the need for data acquisition campaigns in
active conflict zones. It also improves dataset representative-
ness when compared to artificially constructed environments,
which may inadequately capture the complexity of real-world
situations. Second, the use of images sourced from public areas
raises compliance challenges with the GDPR when they con-
tain identifiable individuals, including vulnerable populations.
While autonomous vehicles are expected to process similar
visual data in real time to avoid pedestrian collisions, the
preparation, storage, and processing of corresponding training



datasets requires explicit declaration and handling procedures
under data protection regulations.
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