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Abstract — Operational needs in Earth Observation (EO) 

are increasingly demanding more responsive and autonomous 

systems, particularly for security and defense applications. This 

requires new architectures able to shorten the decision–action 

cycle through real-time event detection, adaptive tasking, and 

intelligent onboard analytics. The IRMA project, led by IRT 

Saint Exupéry, develops Artificial Intelligence (AI)-based 

technologies for mission planning and data processing of EO 

constellations (both on the ground and onboard satellites) to 

enhance reactivity and decision-making in realistic end-to-end 

scenarios. This paper presents the IRMA demonstrator, a 

modular platform emulating a complete EO system and 

integrating advanced technologies such as the adaptive multi-

agent scheduler ATLAS2 and a YOLOX-based ship detection 

pipeline. It validates autonomy, robustness to operational 

constraints, and clarity of outputs for human operators, three 

key challenges for security / defense applications. The 

demonstrator executes fast-paced, end-to-end scenarios on real 

data, offering an engaging and operationally relevant user 

experience. It provides a testbed to mature AI building blocks, 

assess system-level reactivity, and explore the architecture of 

future EO systems combining ground and onboard intelligence. 

Its design supports modularity, standardized APIs and real-

time visualization, and will soon integrate embedded processing 

hardware to enable hybrid ground/onboard workflows in line 

with security and defense requirements for autonomy and 

frugality. 
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Planning, Multi-Agent Systems, AI for Space, AI for Security and 
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I. INTRODUCTION 

The Earth Observation (EO) domain is undergoing a 
profound transformation, driven by the growing demand for 
more responsive, autonomous, and intelligent systems. In both 
civilian and defense contexts, users now expect satellite 
systems to move beyond data delivery and provide timely, 
actionable insights like detecting, interpreting, and reacting to 
events such as natural disasters, illegal activities, or military 
threats within minutes rather than hours. While current 
constellations already produce tens of terabytes of imagery 
daily [1], traditional EO workflows often introduce delays of 
several hours, sometimes a full day, before information 
reaches decision-makers. 

This latency is increasingly incompatible with time-
critical missions. In defense, space-based Intelligence, 
Surveillance, and Reconnaissance (ISR) relies on fast 
detection and re-tasking. The European Defense Fund’s 
SPIDER project directly addresses this challenge by 
promoting autonomous planning, short revisit cycles, and 
minimal end-to-end latency [2], [3]. In the civil domain, 
NASA’s Earth Science to Action strategy similarly calls for 
reducing the gap between observation and response, 
prioritizing decision-ready information [4]. These converging 
priorities are further amplified by the rise of New Space and 
the growing availability of agile, multi-sensor constellations, 
reinforcing the need for integrated, low-latency decision-
action loops — both on the ground and onboard satellites. 

The necessary transformation to meet this challenge 
impacts all components of EO systems. In particular, 
institutional, commercial, and industrial strategies 
increasingly converge on a set of key enabling technologies:  

 Artificial Intelligence (AI), for high-level reasoning 
and interpretation of multi-modal data (optical, radar); 

 Edge Computing on-board satellites, enabling early 
detection, filtering/prioritization and autonomous 
decision-making (e.g. triggering follow-on actions), 
as demonstrated by missions like Phi-Sat 2 [5] and 
CogniSAT-6 [6]; 

 Inter-operability and orchestration, to federate 
heterogeneous multi-mission assets and coordinate 
them under tight timing and mission constraints; 

 Low-latency and seamless communication 
infrastructures, including Ground Station as a Service 
and optical or radiofrequency Inter-Satellite Links 
(ISL), to enable real-time feedback loops and ensure 
global system reactivity. 

These technological directions are echoed in the strategic 
roadmaps of major space stakeholders—including the 
European Union, ESA, CEOS, and NASA—as 
highlighted in recent reports and white papers [7][8] 
[9][10][11][12][13][14]. 

Collectively, these efforts signal a structural shift from 
linear, siloed EO systems toward distributed, intelligent, 



and reactive architectures. Such a shift is essential to meet 
the evolving requirements of both civilian operations and 
time-critical defense applications. Fig. 1 illustrates this 
shift from traditional architectures to the next generation 
of responsive EO systems. 

 

 
 

Fig. 1. From traditional EO systems to intelligent, reactive architectures.  

The IRMA project (Image processing for a Responsive 
Mission with AI) led by IRT Saint Exupéry [15], contributes 
to this transition through AI and edge computing core 
technologies by developing a suite of AI-based technological 
building blocks for intelligent and reactive mission planning 
and data processing, on ground as well as on board. 

IRMA is also developing a demonstrator in order to 
validate and quantify, through realistic and illustrative end-to-
end scenarios, the added value of these technologies in terms 
of system reactivity and autonomy. This demonstrator is a 
modular hardware and software platform that integrates 
IRMA technologies into an architecture emulating the main 
operational components of EO systems. 

The idea of more agile and intelligent EO architectures has 
been discussed in the scientific community for at least a 
decade. In 2015, Golkar presented a federated Satellite 
systems paradigm [16] envisioning heterogeneous spacecraft 
cooperating by sharing resources and services to enhance 
efficiency and resilience. Denis et al. [17] later examined 
potential disruptions in Earth Observation systems and 
markets, highlighting how New Space constellations, data-as-
a-service models, and platform-based business approaches 
could fundamentally reshape EO value chains. More recent 
works have proposed mission and system architectures 
supporting persistent and multi-sensor monitoring [18], or 
demonstrated how autonomous onboard intelligence can 
improve the exploitation of high-dimensional EO data [19]. 

In parallel, several European initiatives are translating 
these concepts into concrete system developments. 
DOMINO-X [20] is a collaborative effort to modernize EO 
ground segments through modular building blocks and 
standardized interfaces. Building on that groundwork, 
DOMINO-E introduces a multi-mission federation layer to 
orchestrate sensors across mission boundaries and optimize 

reactivity through advanced scheduling [21]. Other projects 
also illustrate this paradigm shift. For example, LEONSEGS 
[22] explores federated multi-mission ground segments, 
CALLISTO [23] integrates Copernicus DIAS (Data and 
Information Access Services) data with heterogeneous 
sources through AI and big data processing; and RapidAI4EO 
[24] develops spatiotemporal AI models for high-cadence 
land monitoring. At the same time, on-board AI 
demonstrations (ESA Φ-sat-1/-2, OPS-SAT) show practical 
pathways to filter, prioritize, and act on data at the edge, from 
cloud-screening [25] to anomaly detection experiments in-
orbit [26]. 

While these initiatives are actively addressing future Earth 
observation system needs in Europe, most efforts still either 
work on defining high-level flexible architectures or target 
isolated technological bricks. The IRMA demonstrator takes a 
complementary and original approach by bridging system 
architecture and operational concepts with the integration of 
concrete, state-of-the-art technologies enhancing key system 
functions both on ground and on board. It provides a unique 
environment to assess how these technologies interact within 
full-system workflows and how they jointly contribute to 
complex performance indicators such as system reactivity and 
autonomy. 

The remainder of this paper is structured as follows. 
Section II introduces the main requirements of the IRMA 
demonstrator and the adopted development approach. Section 
III presents the demonstrator architecture and the integration 
of its core components. Section IV details the AI-based 
technological building blocks integrated into the system. 
Section V illustrates a representative use-case scenario, 
highlighting the reactivity loop and dynamic coordination 
between modules. Finally, Section VI concludes the paper by 
emphasizing the demonstrator’s contributions and outlining 
perspectives for future developments. 

II. REQUIREMENTS AND DEVELOPMENT APPROACH 

A. Operational Context 

The main goal of the IRMA demonstrator is to illustrate, 
through “live” demonstration sessions, reactive system loops 
on realistic scenarios, where high-level User Requests (UR) 
trigger adaptive acquisitions, processing and reprogramming 
actions based on AI-driven insights. 

An effort was undertaken to identify Earth Observation 
use-cases requiring high responsiveness, in which traditional 
EO systems fall short due to long processing and reaction 
cycles. This analysis is summarized in TABLE I and provides 
a foundation for aligning system functionalities with real-
world operational needs. 

At maturity, the IRMA demonstrator is expected to 
support complex scenarios such as the following: 

A high-resolution multispectral satellite is tasked to 
acquire images over a conflict area. Thanks to its on-board 
processing capabilities, it detects the spectral signature of 
polymer materials (e.g., plastics) within a densely vegetated 
area indicating a potential camouflage material. An alert and 
a lightweight report are immediately transmitted to the 
ground through a low bandwidth channel. On board, the alert 
also leads to the prioritization of that image’s downlink on the 
next ground-station overpass. 
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On ground, the alert automatically triggers the urgent re-
tasking of a high-resolution radar satellite to acquire a follow-
up image over the same area. Upon reception, the radar 
image is processed and reveals a metallic echo at the exact 
location previously flagged, confirming the likely presence of 
a concealed material. Further exploitation of the radar 
signature may allow for coarse classification of the object 
(vehicle, structure or other material), depending on image 
characteristics and target dimensions. 

This example highlights how the demonstrator bridges 
operational needs with enabling technological capabilities. 

TABLE I.   
EARTH OBSERVATION USE-CASES AND THEIR TYPICAL REACTIVITY NEEDS 

ID Theme 
Expected 

Latency 

1 Maritime surveillance – Oil spills < 1h 

2 Maritime surveillance – Algae, sediments < 3h 

3 Maritime surveillance – Illegal activities < 1h 

4 Port or Airport monitoring < 1h 

5 
Natural disaster (Earthquakes, Floods, 

Hurricanes…) / War zone monitoring 
< 30min 

6 Wildfires < 15min 

7 Search & Rescue < 15min 

8 
Monitoring of critical or 
military industrial sites 

30min – 1 day 

9 
Monitoring of large areas 

(e.g., deforestation, borders) 
30min – 1 day 

10 Soil analysis / Precision farming < 24h 

11 Camouflage detection 30min – 6h 

12 Air quality monitoring – Methane < 1h 

 

B. Key System-Level Requirements 

The illustrative scenario described in the previous 
paragraph is representative of the end-to-end reactivity that 
IRMA aims to support. To achieve this, the demonstrator is 
designed to integrate AI technologies into a simulated EO 
system comprising at least the following components and 
interfaces: 

 Space segment that is configurable with the number of 
satellites and their main parameters: agility, orbit type 
(sun-synchronous (SSO), inclined, etc.), and payload 
modalities (optical, IR, SAR, hyperspectral); 

 Smart mission planning function; 

 On-ground and on-board data processing; 

 Reactivity service, to close the loop between data 
processing and mission planning; 

 Simulation of communication links, with configurable 
number and location of ground stations (including 
Ground Stations as a Service), as well as additional 
links such as low-bandwidth RF channels or Inter-
Satellite Links (ISL). 

During scenario execution, IRMA AI technologies must 
be run in real time on real data. On-board processing must be 

executed on a real edge device with embedded hardware. For 
live demonstrations, the system must compress the execution 
of an operational scenario (normally spanning 6–24 h) into 
less than 10 min, with real-time visualization of key events 
and performance metrics. 

The demonstrator shall showcase as many of the following 
capabilities as possible: 

Event tracking and automatic reprogramming through a feedback loop 

between image analysis (on-ground or on-board) and mission planning. 

Optimal constellation planning, maximizing mission capacity (number 

of images), revisit frequency, and information freshness. 

Mission reactivity for dynamic planning of urgent requests. 

Semantic information extraction from mono- and multi-modal images 

via ground-based processing. 

Semantic information extraction from mono-modal images via on-board 

processing. 

Selective processing (on-ground or on-board) depending on acquisition 

request characteristics. 

Ability to follow the user request status from definition to completion. 

Prioritization of satellite downlink schedules based on urgency and the 

semantic content of on-board processed images. 

Ability to update on-board processing algorithms during the system’s 

lifetime. 

Automatic backup acquisition to replace failed attempts (e.g., due to 

weather or anomalies). 

Capability to program a multi-mission system. 

 

C. Development Challenges and Strategy 

Designing such a demonstrator poses several key 
challenges, including the integration of heterogeneous 
software bricks of varying levels of maturity and origin (R&T 
developments, industrial partners and legacy projects), their 
interoperability within a streamlined yet representative EO 
system architecture, and the need to combine real-time 
execution with offline or embedded components while 
ensuring consistent interface management and temporal 
synchronization. Additional challenges include providing a 
positive and engaging User Experience (UX) during live 
demonstrations, as well as ensuring maintainability and 
modularity for future expansions. 

To address these challenges, the team adopted an agile, 
incremental development approach, allowing step-by-step 
integration and testing of components as well as iterative 
refinement based on user feedback and UX evaluations. A 
model-based systems engineering (MBSE) methodology 
using Capella [27] was also employed to support high-level 
architectural specification, functional decomposition, and 
traceability of system requirements. The demonstrator 
architecture was aligned with the principles of DOMINO-X 
[20], which defines a modular ground segment for next-
generation EO systems. This architecture has been tailored to 
the IRMA demonstrator scope, focusing on components 
where AI brings operational value. 

III. SYSTEM ARCHITECTURE 

A. Software and Functional Architecture 

In its current version, the IRMA demonstrator emulates a 
realistic EO architecture, as illustrated in Fig. 2. It relies on a 
central orchestrator designed to coordinate the simulation 
timeline, manage time-sensitive interactions, and trigger key 
events (e.g., acquisitions, downlinks, processing). This 
mechanism ensures deterministic temporal control and 



smooth integration, while remaining consistent with the 
principles of DOMINO-X promoting modular, event-driven 
and loosely coupled architecture. Our approach and used 
technologies also echoes NASA’s NOS-T (New Observing 
Strategies Testbed) prototyping platform for distributed space 
missions [28]. 

 

 
Fig. 2. Simplified overview of the high-level software architecture of the 

current IRMA demonstrator. The primary programming language used for 
each component is indicated by its corresponding icon. 

The architecture includes the key components defined in 
DOMINO-X, complemented by a few additional modules 
(indicated with a *) specific to the demonstrator: 

 User Access Service (UAS): The main human-
machine interface for defining and visualizing user 
requests as well as the scenario timeline. 

 Mission Programming Service (MPS): Performs 
meshing and analyzes the feasibility of an acquisition 
request, then uses an AI-based Adaptive Multi-Agent 
Planner (AMAS) for dynamic scheduling. 

 Enhanced Processing Service (EPS): Performs AI-
based image analysis in response to the user request 
(e.g., ship detection with a YOLOX model). 

 Reactivity Service (RS): Manages event follow-up 
and makes decisions (such as triggering an alert or 
(re)programming an acquisition) based on 
comparison between EPS outputs and user request 
criteria (rule-based engine). 

 FS (Federation Service): The central orchestrator in 
the Domino-X architecture, responsible for unified 
management of user requests and workflows across 
multiple systems. In the IRMA demonstrator, it is 
implemented as a simplified function focused on 
request handling. 

 Archive & Catalog Service (ACS): Indexes raw and 
processed products using OGC STAC standards. 
Implemented with minimal functions supporting 
other components. 

 Orchestrator (*): Drives the simulation, coordinates 
components, manages the mission timeline, and 
enables observability. 

 Mission Visualization Tool (*): A Cesium-based 
application, referred to as S2V (Scenario to 
Visualization), acting as the main HMI for dynamic 
scenario rendering. It provides real-time visualization 
of satellite operations, orbital tracks, and ground 
stations in both 2D and 3D environments. 

The demonstrator leverages standardized, well-established 
technologies. All components are containerized with Docker 
and expose interoperable REST/OGC interfaces for smooth 
integration and scalability. Communication between services 
relies on modern frameworks such as FastAPI and MQTT, 
enabling real-time interaction, responsiveness, and advanced 
visualization. The entire stack supports automated 
deployment through Docker Compose or Swarm, reinforcing 
maintainability and enabling future extensions to more 
complex or operational deployments. Although the current 
demonstrator focuses on ground-based components, the 
architecture is designed to integrate on-board processing 
modules via a dedicated compute board in the next release. 

B. Hardware architecture 

Physically, the demonstrator is hosted in a modular flight 
case with three interconnected hardware stations, each with its 
own display representing a key part of the simulated EO 
system, as shown in Fig. 3. 

Allocation of system components and HMI to Hardware 
components is shown in TABLE II.  
 

 
Fig. 3. Hardware setup of the IRMA demonstrator. Upcoming versions will 

include an embedded target to emulate on-board processing.  

TABLE II.   
HARDWARE LIST AND SOFTWARE COMPONENTS / HMI ALLOCATION 

Hardware 

station 

Software 

components 
Visual Interface 

Mission MPS, S2V 
AMAS internal acquisition request 

status, global vision of the constellation. 

Image 
EPS, ACS, 

RS 
Images and outputs from EPS (e.g. 
detection bounding boxes). 

Orchestrator 
Orchestrator, 

UAS, FS 

Scenario timeline, User Request 

selection/validation and follow-up, 
alerts, reports and suggested 

reprogramming request, reactivity 

dashboard. 

Spherical 
screen 

S2V Global vision of the constellation. 

Edge target (Upcoming): On-board processing and reactivity. 

a. Interactive HMIs in bold italics 

The demonstrator also includes a spherical screen 
displaying Earth and constellation dynamic evolution (from 
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S2V) to increase UX. Additionally, in a close future an 
embedded hardware target will be connected to the 
demonstrator enabling real-time on-board processing for 
illustration of new, more reactive, operational scenarios.  

IV. TECHNOLOGICAL BUILDING BLOCKS 

The demonstrator integrates key AI-based technologies 
into an architecture emulating the main operational 
components of EO systems. It validates their integration, 
illustrates their added value within a responsive system loop, 
and supports TRL progression through interoperable, 
standardized interfaces. It enables system-level evaluation of 
autonomy, alignment with operational constraints, and clarity 
of outputs for human decision-making, three central 
challenges for security / defense applications. 

The IRMA project develops multiple AI-based 
technological bricks at varying maturity levels, including 
multi-modal image processing (e.g., object detection, 
segmentation, image enhancement), representation learning 
(e.g., image retrieval, captioning), foundation models, and 
unsupervised anomaly detection on both imagery and time 
series. For mission planning, a legacy Adaptive Multi-Agent 
Planner (AMAS) is being upgraded. The project also 
investigates several embedded platforms (AMD, Intel, 
Nvidia), leveraging vendor-specific toolchains to deploy and 
benchmark IRMA algorithms, with a focus on improving the 
robustness of AI models when processing raw remote sensing 
data directly on board satellites. 

In its current version, the demonstrator integrates two 
flagship AI-based technologies, described in the following 
paragraphs: adaptive and reactive mission planning with 
AMAS, and ship detection and recognition with YOLOX. 

A. Adaptive and Reactive Scheduling with AMAS 

A central component of the IRMA demonstrator is the 
Mission Programming Service (MPS), which handles the 
planning and scheduling of satellite acquisitions. This 
component integrates an AI-based planner grounded in the 
Adaptive Multi-Agent System (AMAS) paradigm [29]. More 
specifically, the AMAS implemented in the MPS is a 
redesigned version, called ATLAS2, which enhances the 
responsiveness of Earth observation systems by supporting 
feedback loops from image analysis to mission planning [30]. 

In contrast to traditional greedy algorithms still widely 
used in operational systems, ATLAS2 enables real-time and 
dynamic planning, supporting the insertion of last-minute or 
high-priority requests without restarting the entire planning 
process. The agent-based design models satellites, user 
requests and acquisitions as cooperative agents capable of 
negotiating conflicts and adapting to evolving constraints. 
More precisely, the main intelligence of the multi-agent 
system lies in the way acquisition agents negotiate with each 
other to resolve the non-cooperative conflict situation, 
perceived by a satellite agent, where a required time slot is 
already booked by another acquisition agent. The negotiation 
is based on the criticality of the request (e.g. its priority) and 
on the scheduling cost of this request across all available 
satellite resources. This flexibility makes the system 
particularly well-suited for reactive Earth Observation 
scenarios such as disaster response, environmental 
monitoring, or maritime surveillance. 

In [30], benchmarks on realistic scenarios with agile 
satellites constellations in demonstrate that ATLAS2 can lead 

to up to a 30% improvement in the number of planned requests 
compared to a state-of-the-art hierarchical greedy algorithm, 
particularly in complex, resource-constrained situations (e.g., 
two-satellite systems with thousands of requests). It also 
shows faster and more robust integration of urgent requests, 
as illustrated in Fig. 4, typically re-planning within less than 
one minute, and resolves scheduling conflicts more effectively 
through local negotiation mechanisms.  

Finally, ATLAS2's decentralized nature provides inherent 
scalability to multi-constellation systems, and its “any-time” 
behavior makes it suitable for use in continuous planning 
loops with feedback from image analysis. These properties are 
key enablers for future architectures where on-ground and on-
board mission planning must coexist and interact seamlessly. 

 

Fig. 4. Time to plan an urgent request with the AMAS algorithm (purple) 

compared with HGreedy (gray) for scenario classes of increasing complexity 

(excerpt from [30]) 

B. Ship detection and recognition with YOLOX 

Another core component integrated in the IRMA 
demonstrator is the on-ground Enhanced Processing Service 
(EPS), which hosts AI-based image analysis capabilities. In 
the current setup, this service includes a real-time ship 
detection and recognition module based on YOLOX, a 
member of the “You Only Look Once” family of detectors 
[31], deployed on standard GPU-based hardware. 

This Convolutional Neural Network (CNN) module builds 
upon prior work carried out by IRT Saint Exupéry in the CIAR 
project and presented at CAID in 2022 [32], where a 
YOLOv3-based solution had been implemented and assessed 
for its suitability for on-board deployment and low-latency 
detection of vessels from high-resolution satellite imagery. 
Building on this experience, a YOLOX-S network (S for 
“Small” backbone) was selected for the IRMA demonstrator 
due to its improved balance between detection accuracy, 
model size, and computational efficiency. This exploration of 
lightweight embedded models directly addresses the need for 
frugality and constrained-resource environments, a critical 
concern in security and defense systems. 

YOLOX was trained and validated on a unique, high-
quality dataset specifically created for IRT, consisting of over 
24,000 annotated ships across 46 classes, including small 
vessels, military ships, and commercial cargo ships. The 
dataset, derived from high-resolution (30-50 cm GSD) 
MAXAR imagery, was labeled by expert photointerpreters 
from GEO4I. It contains 24,000 patches of 640 × 640 pixels. 

YOLOX detection/recognition and hardware performance 
results are summarized in TABLE III. Evaluation shows that 
YOLOX-S achieves F1-scores above 40% and a mean 



Average Precision (mAP) of around 30% on unseen test 
images. These global figures are penalized by lower 
performance on underrepresented ship classes, but despite this 
imbalance, excellent precision and recall (both above 90%) 
are achieved for dominant categories such as fishing vessels, 
sailboats, and leisure craft, with promising generalization to 
less represented types. Overall, this level of performance is 
considered sufficient for the demonstrator. 

Inference tests on an AMD FPGA confirm that YOLOX-
S is lighter and faster than YOLOv3, making it a suitable 
candidate for future integration in the demonstrator’s 
embedded hardware. 

TABLE III.   
YOLOX PERFORMANCE SUMMARY ON OUR CUSTOM SHIP DATASET  

Complexity 

Model size  65 MB 

Complexity 26.8 Gflops 

Performance on compute station 

Performance on 
test dataset 

Precision: 
41.5% 

Recall: 
41.6% 

F1-Score: 
41.55% 

mAP: 
29.7% 

Performance on Xilinx ZCU104 FPGA (deployed with VITISAI 3.0) 

Performance on 

test dataset 

Precision: 

38.1% 

Recall: 

37.5% 

F1-Score: 

37.8% 

mAP: 

27.6% 

Hardware 

performance 

(batchsize=1) 

Latency: 
29ms 

Throughput: 
14Mpx/s 

 

To meet the needs of the demonstrator scenario, which 
must operate on full real images (and not only small patches 
from datasets), YOLOX has been integrated into a complete 
ship detection pipeline capable of processing large remote 
sensing images. The pipeline includes image tiling and 
dynamic range adaptation as pre-processing steps, and 
detection map reconstruction at image scale as post-
processing.  

 

Fig. 5. Complete ship detection and recognition pipeline based on YOLOX 

integrated into the EPS. 

Once integrated into the EPS, the delay between the start 
of the processing pipeline and the display of the results 
remains under one minute for demonstration images ranging 
from 100 to 700 megapixels. This latency is acceptable for 
demonstration purposes, with most of the time being spent on 
launching the YOLOX Docker container and handling data 
transfers. 

V. ILLUSTRATIVE SCENARIO: MARITIME SURVEILLANCE 

A. Use-case Selection and Simulated EO System 

In this section, we illustrate the demonstrator’s execution 
on a representative scenario. Among the use-cases listed in 
TABLE I, illegal fishing detection was selected as the first 
demonstrator scenario for several reasons: 

 It requires rapid response loops for effective 
interdiction and acts as a proxy for time-critical 
security / defense missions. 

 It builds on existing IRMA capabilities and previous 
projects, notably the YOLOX-based ship detection 
models and annotated datasets [32]. 

 It produces visual and interpretable outcomes, useful 
for validation and demonstration purposes. 

A realistic EO system was configured alongside the use-
case selection, composed of three satellites and two ground 
stations. The space segment includes one Very High 
Resolution (VHR) optical satellite (30 cm GSD) in Sun-
Synchronous Orbit (SSO) and two High-Resolution (HR) 
optical satellites (70 cm GSD) in inclined orbits to increase 
revisit frequency at mid-latitudes. All satellites have high 
agility. The ground segment includes uplink/downlink 
stations in Kiruna (Sweden) and Toulouse (France). The 
scenario spans a 24-hour period from June 21 to June 22, 
2025. This is summarized in TABLE IV.  

To maintain operational realism, the orchestrator injects 
latencies related to telecommunications and non-simulated 
operations (e.g., primary ground processing for sensor 
correction and georeferencing). These values are predefined, 
based on typical performance in EO systems and operational 
partner feedback. 

TABLE IV.   
MAIN PARAMETERS OF THE SIMULATED SYSTEM 

Parameters Value 

# of Satellites 3 satellites with high agility 

Satellite 1 VHR optical @30cm GSD, 19km swath 

Satellite 2 & 3 HR optical @70cm GSD, 19km swath 

Orbits 
- Sat. 1:     550km; Sun-Synchronous (SSO) 

- Sat 2&3:  550km; Inclined 

Scenario duration 24h from 21/06/2025 to 22/06/2025 

Ground stations 
Kiruna (SWE) + Toulouse (FRA) 
(both for uplink and downlink) 

 
At scenario start, the system is pre-loaded with 1,000 

background acquisition requests of type SPOT (19×19 km) or 
STRIP (19×[20–200] km), distributed globally. Up to 2,000 
additional requests may arrive during execution. These 
requests are not tied to specific use-cases but simulate a 
realistic workload and stress-test for the ATLAS2 multi-agent 
planning system. 

In parallel, several high-priority User Requests (URs) 
represent the selected use-case. Their format, inspired by 
DOMINO-X [20] preliminary definition, has been largely 
improved to cope with the needs of our scenarios (in terms of 
reactivity and processing needs) and with our mission 
planning tool interfaces. When selected by the user, a UR 
triggers a full end-to-end reactive loop, activating the different 
AI technological bricks within a realistic operational context, 
thereby validating their proper functioning and illustrating 
their operational relevance. 

During scenario execution, the user can freely adjust time 
acceleration. However, all IRMA technologies are executed in 
real time to showcase their actual performance, requiring strict 
synchronization by the orchestrator. 

B. Scenario Execution and Functional Chain Validation 

In this maritime surveillance scenario, the reactive loop is 
initiated when the user selects and validates a pre-defined UR 
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in the UAS. This activates the full end-to-end functional chain 
of the demonstrator, summarized in Fig. 6. An alert is 
triggered if at least one fishing vessel is detected in the image 
(assuming the area is a prohibited fishing zone). 

 
Fig. 6. Simplified functional chain of the maritime surveillance scenario 

Illustrative outputs from the demonstrator, generated 
during an illegal fishing detection scenario over the Golfe du 
Morbihan (France), are shown in Fig. 7 on the next page. The 
screenshots illustrate, in order (left to right, bottom to top): 

 UAS: Locations of predefined User Requests. Initial 
state of the scenario, with the system already 
processing background requests and waiting for a 
high-priority one. 

 UAS: Selection of an illegal fishing UR. The user 
chooses among several predefined requests, each 
triggering a reactive loop that showcases the role of 
AI in enhancing responsiveness. 

 UAS: Selected UR parameters. User-defined 
acquisition, processing, and reactivity parameters are 
displayed. 

 UAS: UR follow-up interface. Once a UR is selected 
from the HMI, it is sent to the Federation Service 
(FS), which dispatches its elements to other 
components. At each major event, the UR status and 
scenario timeline are updated in the UAS. 

 MPS: ATLAS2 acquisition requests internal state. It 
shows how the mission planner schedules 
acquisitions, prioritizing high-priority requests. 

 S2V: Dynamic mission visualization. The user can 
follow the scenario’s space segment activities in real 
time. When a satellite passes over the ground station, 
the orchestrator simulates plan upload and data 
download while S2V shows corresponding 
communications with ground stations. 

 EPS: Ship detection and recognition with YOLOX. 
Once the UR image is acquired and downloaded, the 
EPS retrieves and processes it, displaying both the 
image and detection results. 

 RS/UAS: Detection report and reprogramming 
request. When a ship is detected in a non-fishing area, 
the RS generates an alert, a report, and a suggested 
reprogramming request, all displayed in the UAS for 
user validation. 

This scenario validates the end-to-end integration of 
IRMA technologies and demonstrates their relevance in a 
realistic maritime surveillance context. It also shows how AI-
driven autonomy can accelerate decision-making. 

VI. CONCLUSION AND PERSPECTIVES 

The IRMA demonstrator provides a unique environment 
to validate reactive system loops in Earth Observation, 

bridging system architecture, operational concepts, and state-
of-the-art AI technologies. It offers a tangible and 
operationally relevant platform to mature technologies, 
validate functional integration, and test interoperability 
between components. These objectives align with European 
strategic initiatives such as the Earth Observation 
Governmental Service (EOGS), currently under ESA and EU 
study contracts, and the upcoming ERS-EO program, both 
aiming to enable resilient and responsive EO capabilities for 
security and defense applications. 

By integrating concrete capabilities such as adaptive 
multi-agent planning and real-time ship detection with 
YOLOX, IRMA demonstrator shows how autonomous 
decision loops can be implemented and evaluated under 
realistic conditions. It thus accelerates the maturation of key 
AI components, enforces standardized interfaces, and 
highlights their operational value through interpretable, user-
oriented outputs. Future developments will extend its scope to 
additional use-cases, multi-sensor configurations, and 
onboard intelligence. 

Lessons learned from IRMA also address broader security 
/ defense challenges. The demonstrator illustrates how 
autonomy can be enabled through closed-loop reactivity, how 
robustness can be strengthened by testing AI on representative 
scenarios, and how explainability can be enhanced by 
providing transparent outputs at every stage of the loop; all 
aspects fully aligned with the challenges emphasized by CAID 
2025. The forthcoming integration of FPGA platforms also 
contributes to frugality, a critical requirement for space-based 
and defense-oriented applications. 

In addition to serving as a communication and integration 
tool, the demonstrator paves the way for a future end-to-end 
performance simulation framework. Such a tool is 
increasingly needed to quantify reactivity performance, now a 
key decision factor for institutional and commercial EO users. 
Unlike classical metrics such as revisit time, which only 
reflect acquisition capability, reactivity is a system-level 
metric that depends on the coordinated behavior of satellites, 
ground segments, communication links, and processing both 
on board and on ground. Enhancing global system reactivity 
therefore requires progress across almost all EO system 
domains and is intrinsically tied to automation and autonomy. 

As the next steps unfold, the IRMA demonstrator will 
continue to act as a catalyst for advancing the design and 
evaluation of intelligent, responsive EO systems, while 
contributing to the development of next-generation 
autonomous security / defense architectures. 
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Fig. 7. Simplified functional chain of the maritime surveillance scenario.  (Satellite images: Maxar Imagery Product © 2015 Maxar Technologies Technologies.)

 

UAS: Locations of predefined User Requests 
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UAS: UR follow-up request interface 

 

 
MPS: ATLAS2 acquisition requests internal state 

 

 
 

S2V: Dynamic Mission visualization 

 

 
 

EPS: Ship detection/recognition results with YOLOX 
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