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Abstract—Federated learning (FL) enables collaborative train-
ing of machine learning models across multiple parties without
sharing raw data, making it particularly appealing for de-
fense applications involving sensitive or classified information.
While the privacy risks of FL have been extensively studied
for classification tasks, vulnerabilities in federated segmentation
models, which are widely used for precise object detection
and reconnaissance, remain largely unexplored. Existing studies
on segmentation have focused on centralized settings, typically
relying on prediction losses as the main leakage vector.

In this work, we present the first systematic analysis of
membership inference attacks on binary segmentation models
trained under FL. We demonstrate that gradient updates pro-
vide a significantly stronger signal for inferring training data
membership than losses, posing substantial risks in collaborative
defense scenarios. Our experiments highlight the need of imple-
menting robust privacy-preserving mechanisms to protect critical
operational data.

Index Terms—membership inference attacks, automatic target
detection, segmentation, federated learning, privacy

I. INTRODUCTION

In modern military operations, multiple units (from ground
vehicles to reconnaissance drones) must collaboratively build
a shared understanding of the battlefield, without exposing
sensitive imagery. Collaborative learning offers a solution by
enabling each system to improve its perception capabilities
while keeping raw data private. To be effective, these systems
must detect, recognize, and precisely locate objects to operate
in complex environments. This makes semantic segmentation
a model of choice, as it provides precise pixel-level classifica-
tion, essential for identifying targets and distinguishing allies
from adversaries. But, this setup raises a critical question:
could collaborative learning of semantic segmentation models
unintentionally leak sensitive information ?

Federated learning (FL) [1] allows multiple parties to col-
laboratively train a machine learning model without sharing
their raw data. The idea is that each party has its local
data and only model updates on the local data are shared
with an aggregation server that orchestrates the training. By
enabling multiple clients to jointly optimize a global model
while keeping their data local, FL offers an attractive solution
for privacy-preserving learning in critical domains such as
healthcare [2], [3], finance [4], and increasingly, defense [5].

Although federated learning is designed to reduce privacy
risks, the information exchanged during training can still

Fig. 1. MIA principle in centralized learning.

leak sensitive details. A growing line of work has investi-
gated privacy attacks that exploit these shared model updates.
Among them, membership inference attacks (MIAs) [6] are
particularly concerning. As illustrated by Figure 1, MIAs seek
to determine whether a specific data point was part of a client’s
training set, exploiting the tendency of machine learning
models to memorize training data. In the context of MIA, a
’member’ refers to data that is part of the training dataset of
the targeted model, while a ’non-member’ denotes data that
is not included in this dataset. Their principle relies on the
fact that the model behaves differently between training data
and unseen data. Unlike gradient inversion attacks (GIAs) [7],
which attempt to reconstruct input data from shared gradients
and often rely on restrictive conditions such as small batch
sizes or minimal local training epochs, MIAs can operate
under more realistic assumptions. Consequently, MIAs pose
a practical and significant threat in federated environments.

While research has focused on MIAs in the context of
classification tasks [8]–[10], significantly less attention has
been paid to other machine learning applications that also
handle highly sensitive data. In particular, semantic segmen-
tation has received little scrutiny regarding its vulnerability
to membership inference in federated learning. This gap is
especially concerning given the growing interest in deploying
segmentation models on edge devices such as drones [11],
[12]. These devices increasingly rely on federated learning to
collaboratively improve perception models without transmit-
ting raw imagery back to a central server.

In this work, we address this gap by examining server-
side membership inference attacks during federated learning



of binary segmentation models.
• We evaluate the effectiveness of membership inference at-

tacks on federated binary segmentation, highlighting that
even without strong assumptions about attacker’s capa-
bilities, these models are susceptible to privacy breaches.

• We improve over the state-of-the-art by showing that
artificially increasing the number of clients can introduce
a bias that amplifies the effectiveness of gradient-based
attacks.

• Finally, we hypothesize that certain iteration rounds
exhibit stronger susceptibility to inference attacks than
others. By leveraging the segmentation performance of
the federated model to identify and select these more
informative iterations, we demonstrate that the server can
enhance the effectiveness of inference .

Our findings underscore the need of addressing privacy
vulnerabilities and server-side threats in federated learning,
especially as it is applied to complex tasks like segmentation.

II. BUSINESS NEED / MOTIVATIONS

Federated learning is inherently suited for scenarios in-
volving sensitive or confidential data, making it an attractive
approach across domains such as healthcare, finance, and
particularly defense. In military contexts, FL can be deployed
to collaboratively trained models across multiple entities with-
out sharing raw data, preserving operational secrecy. Beyond
centralized installations, federated learning holds promise for
integration directly on edge platforms such as autonomous
vehicles and drones; enabling these systems to continuously
improve object detection or segmentation capabilities by learn-
ing from local observations collected in diverse environments.
For reconnaissance drones in particular, this means adapting
models in real time to new terrains or targets, without ever
transmitting potentially sensitive imagery back to a central
server. Additionally, by sharing only model updates instead
of raw data, FL also helps lower the communication costs
associated with centralized learning.

While reconstructing complete images from model updates
remains a technical challenge, subtle forms of information
leakage, such as revealing data characteristics (e.g., image
resolution or content type) or identifying which clients par-
ticipated in training, could still pose serious risks. This un-
derscores the importance of thoroughly understanding privacy
vulnerabilities in federated learning.

III. RELATED WORK

A. Federated Learning

Existing FL architectures can be either centralized (Fig.2),
relying on a server to aggregate local updates, or fully de-
centralized, where clients communicate peer-to-peer [13]. In
centralized settings, the server coordinates the learning process
[14], and at each iteration it collects all local updates and
aggregates them. This aggregation process grants the server
access to a substantial amount of information, positioning it
as a potentially powerful adversary. In our work, we will only
focus on a centralized federated setting and demonstrate the

Fig. 2. Principle of Centralized Federated Learning.

extent to which a server can infer information about local
datasets. However, recent research has shown that significant
privacy risks persist even in decentralized settings [15].

B. MIA in a Federated Setting

MIAs leverage the observation that machine learning mod-
els tend to behave differently on data they have seen during
training versus unseen data: producing lower losses or more
confident predictions on training samples [8]. Various strate-
gies have been proposed to exploit this discrepancy, differing
mainly in the metrics they use and the level of adversary
involvement, from passive observation to actively training
shadow models.

1) Attacks based on model updates: A significant body of
work investigates MIAs that exploit information contained in
model updates exchanged during federated learning.

Gradient-based attacks compare raw gradients, their norms,
or compute metrics such as cosine similarity to distinguish
members from non-members [9], [16], [17]. These methods are
often highly effective in classification and entirely passive, but
require direct access to model gradients (white-box scenario).

Loss-based attacks instead rely on the observation that the
loss is typically lower for training data [18]. These attacks
can be carried out without access to the model architecture
and weights (black-box settings).

Another classical strategy involves shadow training, where
the attacker builds one or more shadow models on data drawn
from a distribution similar to that of the target. These shadow
models are then used to train membership classifiers that
predict whether a given sample was part of the target’s training
set [19] [20]. While this approach is often more precise, it
requires substantial auxiliary data and considerable computa-
tional resources, making it significantly more expensive than
above attacks, which typically only involve running inference
or computing gradients on the target model.

More intrusive attacks involve manipulating local models or
the training process itself to introduce vulnerabilities that can
later be exploited [21], [22]. Such methods reduce the need for
data but are more detectable by traditional defense methods.

2) Attacks based on training dynamics: Other techniques
analyze how certain metrics evolve over multiple training



rounds, typically without requiring access to labels or explicit
gradients. This places them in a largely black-box setting,
imposing fewer constraints on the attacker. For example,
some approaches monitor the evolution of the loss across
federated iterations [23]–[25], while others track how predic-
tion confidences change over time [16], [26]. More recent
methods examine shifts in the bias terms of the final layer
[27]. However, these strategies are often more sensitive to
training dynamics, and some still rely on access to prediction
confidences or internal parameters, which may not always be
available in practice.

C. FedMIA [10]

Instead of training shadow models to obtain additional
information at a significant computational costs, [10] proposes
an approach that leverages information from non-target clients.
Assuming that clients’ datasets are disjoint, they demonstrate
that it is possible to estimate the distribution of attack signals
(such as losses or gradients) for models that are not trained
on the target data (the ”non member” distribution). Then, by
employing a one-tailed likelihood-ratio hypothesis test using
the estimated non-member distribution, they can infer whether
the target data was part of the training dataset for the targeted
client. The Figure 3 illustrates the FedMIA approach. Our
work builds in part on this method by combining it with
shadow models to further enhance the information accessible
to the central server.

Fig. 3. All vs Target Attack Principle: FedMIA [10] Overview.

D. MIA on Segmentation Models

Segmentation tasks fundamentally differs from classification
by predicting a label for each pixel rather than assigning a
single label per image, and typically employ pixel-wise losses
that compare entire spatial maps.

The richer output structure of segmentation models may
affect both the type of privacy leakage and the metrics that
are most informative for inference attacks.

Although some studies have investigated MIAs against
segmentation models under conventional centralized training,
this body of work remains relatively limited. Most approaches
exploit the segmentation loss, operating under the hypothesis
that it reveals more about individual data samples than in
standard classification settings. Early work on membership
inference for segmentation models focused on exploiting lo-
calized loss signals. He et al. [28] proposed a patch-based
analysis of the loss map, showing that certain spatial regions

Fig. 4. MIA Threat Model in Federated Learning.

of the output can carry stronger membership signals than
global loss alone. Building on this direction, Chobola et al.
[29] conducted a more comprehensive study, distinguishing
between binary and multiclass segmentation settings. Using
shadow models, they evaluated three attack strategies: one
based on global loss, one using patch-wise loss, and another
combining the target model’s predictions with the ground truth
masks. Their findings revealed that, somewhat surprisingly, the
global loss often remained the most effective signal. However,
all these investigations have been confined to centralized
learning, leaving open the question of how segmentation
models trained under federated learning might be vulnerable
to membership inference. In this work, we address this gap
by presenting the first systematic study of MIAs on federated
binary segmentation models, while also evaluating signals
beyond the commonly examined loss.

IV. MEMBERSHIP INFERENCE ATTACK ON A BINARY
SEGMENTATION MODEL IN A FEDERATED SETTING

A. Threat Model

We consider a federated learning setting with a centralized
architecture, where a server orchestrates the collaborative
training of a global model by aggregating updates received
from multiple clients. In this context, we examine the scenario
in which the server aims to infer private information from the
clients’ contributions, without seeking to interfere with the
federated learning process.

Figure 4 provides an illustration of this threat model.
The server has direct access to all model updates ex-

changed during training, including their weights, architecture
and hyper-parameters, corresponding to a white-box scenario.
We consider two levels of attacker behavior.

• Passive scenario: the server respects the FL protocol
without interfering with client operations. Its only inter-
vention consists in executing additional inference passes
on candidate samples.

• Proactive scenario: the server injects artificial clients into
the training process to simulate non-member behaviors.
This allows the server to better characterize non-member



Fig. 5. Server vs Target Attack Principle.

samples and thus more easily distinguish them from
members.

In both cases, we assume all clients behave honestly, they do
not collude with the server or with each other and do not try
to poison the training.

B. Notations

We consider a federated learning process over T communi-
cation rounds with K clients. Let (x, y) denote a target data
instance, where x is an input image and y its corresponding
ground-truth segmentation mask. We use W

(t)
S to represent the

global model weights held by the server at the end of round
t, and W

(t−1)
S for the previous round. Similarly, W (t)

k denotes
the local model weights trained by client k during round t.
The local update sent by client k is given by Equation (1).

Itk = W
(t)
k −W

(t−1)
S . (1)

We further denote by ∇WL(y, x;W
(t)
S ) the gradient of the loss

function L evaluated on (x, y) with respect to the global model
parameters. This quantity captures the direction in parameter
space that would most improve prediction on the specific
instance (x, y).

C. Type of MIAs

In this work, we investigate two main dimensions of mem-
bership inference attacks on federated segmentation models:
the attacker’s comparison strategy and the signal exploited to
infer membership.

1) Comparing Server-Only and All-for-One Attacks: We
explore two different attacker perspectives based on how the
server leverages the information available from local updates.

• Server vs Target: In this classical approach, the server
focuses exclusively on the update received from the
targeted client. As illustrated by Fig.5, at each commu-
nication round t, for a given candidate instance (x, y),
the server computes an indicator of membership (such
as cosine similarity or loss difference) by comparing the
targeted client’s update Itk = W

(t)
k − W

(t−1)
S to the

behavior of the global model.

• All vs Target: This more recent approach, inspired by
FedMIA [10], leverages the updates from all participating
clients. For each round, the server estimates the distri-
bution of membership signals across non-target clients,
treating them as a baseline under the null hypothesis
that they did not train on (x, y). A statistical test is then
performed to assess whether the target client’s signal sig-
nificantly deviates from this distribution, thus providing a
confidence measure (p-value) for inferring membership.

2) Attack Signal: We evaluate two primary signals used to
distinguish member from non-member data:

• Cosine Similarity of Gradients: For each candidate
instance, we compute the gradient of the loss with respect
to the global model parameters at round t, denoted
∇WL(y, x;W

(t)
S ). The cosine similarity between this

gradient and the targeted client’s update measures their
alignment:

cosim(x, y) =
⟨∇WL(y, x;W

(t)
S ), Itk⟩

∥∇WL(y, x;W
(t)
S )∥2 · ∥Itk∥2

. (2)

Empirically, gradients associated with independent data
tend to be nearly orthogonal in high-dimensional spaces,
so a significantly higher similarity indicates that (x, y)
may have been used to train the local model.

• Loss Difference: This simpler attack compares the
loss values computed by the global model and by the
target client. In segmentation, the pixel-wise nature of the
loss function provides a finer-grained signal than typical
classification settings. The hypothesis is that if (x, y) was
seen during local training, the discrepancy in loss between
the server and the client’s update will be statistically
smaller.

V. EXPERIMENTAL SETUP

A. Dataset and Model
We restrict our study to binary segmentation, both for

simplicity and as a first step toward understanding membership
inference vulnerabilities in federated segmentation models.
Our target model is a UNet [30], a widely used architecture
in segmentation tasks. We employed the iSAID dataset [31],
which contains aerial images from complex scenes annotated
across 15 object classes, including ships, aircraft, and harbors.
This dataset was chosen as it most closely resembles the
Automatic Target Detection/Recognition use case, which is
particularly relevant for application of segmentation models in
defense, with relevant classes and varying image resolutions.
To adapt it to a binary segmentation task, we filtered the
dataset to retain only images containing at least one instance
of type harbor. After filtering, the final dataset comprised 311
images, of which 281 were used for training and 30 for testing.
Figure 6 shows an example image and its corresponding mask.

B. Data Distributions
Given the limited number of training images, we explored

two data distribution strategies, each aligned with one of the
attacker behaviors introduced in Section IV-A.



Fig. 6. Image (left) and Label (right) of the filtered iSAID [31] dataset.

For the first scenario, training data was distributed equally
among clients. We limited experiments to 3 and 5 clients, as
beyond that threshold, each client receives too few images,
making local training less meaningful.

To simulate the proactive server scenario, we adopted an
overlapping data distribution. In this setup :

• The clients 1 (the target) and 2 receive 25% of the training
data (70 images each),

• The remaining 50% of the training data (called the
shadow dataset) is randomly split among synthetic clients,
such that all clients hold 70 images. We use a draw with
replacement, so that an observation can be simultaneously
be present in two (or more) clients. This allows us to
simulate a larger number of clients without reducing the
data available to the target client.

We conducted experiments with 5, 10, and 20 clients under
this setting. To construct evaluation datasets, we sampled
member instances from the target client’s training data, and
non-member instances from the concatenation of the test set
and the training data from other clients.

C. Training Setup

We trained the global model using the classical FedAvg [14]
aggregation scheme, computing a simple average of updated
weights from all clients. All images were resized to 300×350
pixels. Training employed the Adam optimizer with learning
rates ranging from 10−5 to 10−2. To mitigate class imbalance
in the masks, we used a weighted binary cross-entropy loss
defined by:

Lbalanced(y, ŷ) = L(y, ŷ)× (1− α+ α ybalanced),

where L is the standard binary cross-entropy, ŷ the predicted
mask, and ybalanced is calculated as

ybalanced,i,j =

{
γ if yi,j = 0

1− γ otherwise

with γ equal to the proportion of positive pixels in y.
We investigated the influence of the number of local epochs

per client by testing values of 1, 2, and 4. We kept the
total local training epochs fixed at 100, resulting in 100,
50, or 25 communication rounds respectively. This ensures
equivalent data exposure across all configurations, which is
essential for future studies incorporating differential privacy.
We hypothesized that increasing local epochs could amplify

attack success by widening the gap between local and global
models.

All experiments used a fixed random seed. Due to com-
putational constraints, variability was evaluated on a single
configuration (1 local epoch, 100 rounds, learning rate 10−3),
repeated ten times.

D. Evaluation Metrics
We evaluated segmentation model performance using the

DICE coefficient, defined as

DICE =
2 · TP

2 · TP + FP + FN
,

where TP , FP , and FN denote true positives, false positives,
and false negatives, respectively. In our binary segmentation
setting, white pixels represent True values, and black pixels
False. The DICE score therefore measures the degree of
overlap between the predicted and ground-truth masks.

For attacks, we followed standard membership inference
metrics, primarily reporting the area under the ROC curve
(AUC) and the true positive rate at a fixed false positive
rate (TPR@FPR), with FPR set to 0.01. The AUC provides
a global assessment of an attack’s performance across all
possible decision thresholds, while TPR@FPR focuses on a
critical operating point where false positives must be tightly
controlled. This is particularly relevant for sensitive applica-
tions that require stringent control over false positives. We
compute the membership inference metrics using the training
dataset of the target client as ’member’. Then we either use
the test dataset alone as ’non-member’ or the concatenation
of the test dataset with the other clients dataset. Unless stated
otherwise, the later metric is used on the presented results.

VI. EXPERIMENTAL RESULTS

Unless stated otherwise, all results presented come from
experiments conducted using a learning rate of 10−3 with one
local epoch per client.

A. Passive Attacker Scenario
Table I present the results obtained under the passive server

setting, where data was distributed equally among clients. Due
to the limited dataset size, this configuration could only be
evaluated with 3 and 5 clients, reflecting the scenario where
for instance several organizations collaborate together in the
framework of a military mission involving surveillance drones.

In this setting, FedMIA Loss achieves the best result with an
AUC of 65.5% and TPR@FPR of 8.9% at 5 clients. With only
3 clients, all attacks perform poorly, as the reduced number of
client limits the attacker’s ability to extract meaningful signals.
Moreover, FedMIA’s statistical test is theoretically valid only
with at least 5 clients, though we included the 3-clients case
for empirical completeness.

These observations suggest that in a setting featuring few
clients and limited overfitting, membership inference attacks
remain relatively ineffective. This motivates the investigation
of a proactive server strategy, where the server can inject
artificial clients to strengthen its ability to model non-member
behavior statistically.



TABLE I
AVERAGE ATTACKS RESULTS IN THE PASSIVE SCENARIO BY CLIENT COUNT (100 ITERATIONS, LEARNING RATE 10−3).

Data Distribution N° Clients
Cosine Similarty Loss Difference FedMIA Cosine FedMIA Loss

AUC TPR@FPR0.01 AUC TPR@FPR0.01 AUC TPR@FPR0.01 AUC TPR@FPR0.01

Normal
3 55.6% 2.2% 58.3% 2.2% 60.0% 4.3% 61.8% 6.5%
5 57.2% 1.8% 62.4% 5.4% 61.8% 7.1% 65.5% 8.9%

TABLE II
AVERAGE ATTACK RESULTS WITH AVERAGE ON ATTACK RESULTS ON ALL ITERATIONS (100 ITERATIONS, LEARNING RATE 10−3 , 10 CLIENTS).

Local Epochs
Cosine Similarty Loss Difference FedMIA Cosine FedMIA Loss

AUC TPR@FPR0.01 AUC TPR@FPR0.01 AUC TPR@FPR0.01 AUC TPR@FPR0.01

1 60.7% (+- 5.2%) 3.6% (+- 4.3%) 63.1% (+- 6.8%) 7.1% (+- 2.9%) 72.0% (+- 4.0%) 10.4% (+- 5.3%) 69.4% (+- 4.0%) 10.3% (+- 3.1%)
2 64.1% 7.1% 68.6% 14.3% 68.9% 18.6% 70.5% 12.9%
4 71.8% 12.9% 74.8% 11.4% 72.5% 21.4% 76.1% 20.0%

TABLE III
AVERAGE ATTACKS RESULTS IN THE PASSIVE SCENARIO BY CLIENT COUNT (100 ITERATIONS, LEARNING RATE 10−3).

Data Distribution N° Clients
Cosine Similarty Loss Difference FedMIA Cosine FedMIA Loss

AUC TPR@FPR0.01 AUC TPR@FPR0.01 AUC TPR@FPR0.01 AUC TPR@FPR0.01

Overlapped
5 66.9% 5.7% 58.5% 5.7% 66.6% 12.9% 65.8% 8.6%

10 60.7% 3.6% 63.1% 7.1% 72.0% 10.4% 69.4% 10.3%
20 66.0% 17.1% 67.7% 17.1% 76.8% 20.0% 72.3% 14.3%

B. Proactive Attacker Scenario
1) Overall Attacks Effectiveness: The first row of Table II

summarizes the results obtained with 10 different seeds to
assess the reproducibility on the configuration with 10 clients,
1 local epoch, 100 iterations with a learning rate of 10−3. For
this configuration we provide the mean value and the standard
deviation.

FedMIA-based (All VS Target) strategy clearly outperforms
the ’Server vs Target’ strategy for both attack signals. FedMIA
Cosine and FedMIA Loss achieve an average AUC of 72% and
69.4% respectively with an average TPR@FPR of 10.4% and
10.3% respectively. In contrast, both the Cosine Similarity and
Loss Difference attacks perform poorly, with an average AUC
of 60.7% and 63.1% respectively with an average TPR@FPR
of 3.6% and 7.1% respectively.

2) Impact of Local Epochs: Table II presents the influence
of the number of local training epochs on the effectiveness
of membership inference attacks. In practice, increasing the
number of local epochs reduce the overall number of iteration
needed, and thus reduce the communication cost of federated
learning. Until we reach a number of local epoch that cause
to much divergence on the local updates, preventing the
convergence of the federated learning process.

Overall, we observe that attacks are sensitive to the number
of local epochs. This is particularly noticeable for the ’Server
vs Target’ strategy, namely the Cosine Similarity and the Loss
Difference attacks those AUC at 4 local epochs almost reach
the FedMIA-based attacks. However, FedMIA-based attacks
have a TPR@FPR that increases far above the ’Server vs
Target’ strategy, reaching more than 20% when the Cosine
Similarity and Loss Difference remain below 13%. This result

aligns with expectations: with more local updates before
aggregation, the model drifts further from the global average,
increasing its capacity to memorize training examples and thus
making membership inference easier.

3) Influence of Client Count: Table III presents the results
of our study on the influence of the number of clients in the
proactive scenario. It reveals that increasing the number of
shadow clients leads to much stronger attack success. As we
can see, this configuration benefits FedMIA-based attacks in
particular. With 20 clients, FedMIA Cosine achieves an AUC
of 76.8% and a TPR@FPR of 20.0%, indicating a critical
privacy breach. This trend aligns with theoretical expectations:
as the number of clients grows, the statistical tests gain power,
enabling the attacker to more accurately distinguish members
from non-members.

Interestingly, in this overlapped setting, gradient-based at-
tacks (FedMIA Cosine) consistently outperform loss-based
methods. This setup also reflects a realistic yet concerning
scenario: by adding artificial clients, a malicious server could
improve its inference power by creating more ”non-member”
profiles to contrast against targeted clients.

4) Influence of Training Dynamics: We analyzed how
model convergence and overfitting affect membership infer-
ence success by training the segmentation model with a small
learning rate (10−4), 10 clients, and 1 local epoch. This
configuration slows down convergence, allowing us to assess
attack performance throughout the learning process.

In the left of Figure 7, we display the target client model’s
performances after each iteration on its training dataset (named
target) and the test dataset. It shows that the model starts
overfitting on the target dataset at around 250 iterations. In the



Fig. 7. Target model DICE score (left), server model DICE score (center) and attacks AUC (right) over training iterations (lr=10−4). The ’dataset’ legend
corresponds to the plot on the left and on the center. The ’attack’ legend corresponds to the plot on the right.

TABLE IV
AVERAGE ATTACKS RESULTS BY DATA DISTRIBUTION AND CLIENT COUNT (100 ITERATIONS, LEARNING RATE 10−3). THE ATTACK IS PERFORMED
USING AS NON-MEMBER THE TEST DATASET ONLY. THE ATTACK CONSIDER EITHER ALL ITERATIONS OR SELECTED ITERATIONS BASED ON DICE

METRICS WITH 0.4 THRESHOLD.

Non member dataset Data Distribution N° Clients
Cosine Similarty Loss Difference FedMIA Cosine FedMIA Loss

AUC TPR@FPR0.01 AUC TPR@FPR0.01 AUC TPR@FPR0.01 AUC TPR@FPR0.01

all iterations

Normal
3 57.9% 6.5% 53.3% 1.1% 54.3% 4.3% 57.1% 5.4%
5 55.1% 1.8% 56.4% 0.0% 58.0% 7.1% 62.2% 10.7%

Overlapped
5 57.3% 17.1% 51.2% 5.7% 54.7% 10.0% 59.0% 7.1%

10 56.0% 5.4% 55.6% 6.0% 60.5% 9.1% 60.2% 6.1%
20 61.8% 5.7% 56.8% 12.9% 66.0% 18.6% 60.9% 14.3%

selected iterations

Normal
3 62.8% 3.2% 50.5% 1.1% 55.6% 4.3% 56.7% 5.4%
5 63.9% 17.9% 52.0% 0.0% 58.8% 12.5% 63.4% 12.5%

Overlapped
5 65.3% 4.3% 50.9% 5.7% 57.4% 12.9% 58.8% 5.7%

10 60.9% 10.7% 54.4% 7.9% 61.2% 9.4% 61.2% 7.9%
20 68.9% 32.9% 54.2% 12.9% 64.5% 14.3% 58.8% 17.1%

center of Figure 7, we show the global model’s performances
after the aggregation at each iteration on the shadow dataset
and the test dataset. We observe also that the overfitting on
the shadow dataset starts earlier at around 125 iterations.
Correspondingly, the right graph of Figure 7 illustrates how all
attacks benefit from model convergence. Performance remains
weak while the model performances are low. When the model
DICE is below 0.4, we observe that all the attacks have perfor-
mances close to randomness. Then the attacks performances
increase progressively, achieving around and above 0.80 in
AUC after 300 iterations.

These results confirm a well-established observation: over-
fitting amplifies membership leakage. Even basic signals be-
come highly predictive when the model starts memorizing
training data, reinforcing the importance of carefully managing
training dynamics in privacy-sensitive applications. However,
if overfitting of the target model amplifies membership leak-
age, overfitting of the shadow clients created by the malicious
server can also impact the attack. Indeed we evaluate the attack
performance by its ability to distinguish between target dataset
and a concatenation of test dataset and other clients dataset
among whose the shadow clients. Table IV shows the attacks

results when the member dataset is the training dataset of the
target client, and the non-member dataset is the test dataset
only. The first half of the table show the results when all
iterations are taken into account. We see that the obtained
results are much closer to randomness, only FedMIA Cosine
achieve an AUC above 0.65 with a TPR@FPR at 18.6%. It
means that in the proactive scenario, the malicious server is
able to learn an attack very effective in distinguishing the target
dataset from the shadow dataset but less effective to distinguish
the target from the test dataset. However, in the following we
highlight that by focusing on the training dynamics it increase
the attacks performances on target VS test dataset.

5) Improved attack based on training dynamics: Based
on the previous observation, regarding the correlation of
the attack performances and the model segmentation metric
performances, the server can enhance the attack by selecting
the iterations based on the observed DICE. We use a threshold
on the DICE obtained on the test dataset to ensure that the
model is far from random. Table IV displays the attacks
performances when the server selects only the iterations on
which the global model achieves a DICE above or equal 0.4
on the test dataset. We see that the Cosine Similarity attack



is dramatically improved by this iteration selection achieving
above 60% of AUC in all data distribution and number
of clients settings, and reaching a TPR@FPR of 32.9%
with 20 clients. However, the FedMIA-based strategy is not
improved by the iteration selection.

VII. DEFENSES RECOMMENDATIONS

Numerous defense mechanisms have been proposed to
mitigate membership inference attacks in federated learning.
Early approaches rely on lightweight techniques such as data
augmentation [32], MixUp [33], or gradient sparsification
[34]. These methods aim to regularize training and reduce
overfitting, thereby limiting the information leakage from
model updates. However, they offer limited protection in
white-box settings and can often be bypassed by adaptive
attackers. Moreover, stronger defenses such as differential
privacy [35], [36] inject noise into updates but typically induce
a degradation of the model performances to be efficient.

To provide more robust privacy guarantees, cryptographic
approaches such as Fully Homomorphic Encryption (FHE)
[37], [38] and Secure Multi-Party Computation (SMPC) [39],
[40] have been explored [41]. FHE allows each client to
encrypt its model updates before sending them to the server,
which can then perform aggregation directly in the encrypted
domain. This ensures the server never has access to raw
parameters. However, FHE remains computationally expensive
and does not support non-linear operations natively, making
it incompatible with sophisticated aggregation methods. On
the other hand, SMPC distributes computation across sev-
eral non-colluding servers, enabling secure training without
exposing individual contributions. While more practical than
FHE in certain scenarios, SMPC still incurs communication
overhead and requires careful orchestration between parties.
Both mechanisms have the notable advantage of preventing
not only MIAs but also broader classes of privacy attacks.

In high-stakes applications such as defense, where sensitive
imagery and operational data are involved, adopting such
strong privacy-preserving mechanisms may become necessary
despite their computational cost. Future work should focus
on systematically evaluating these defenses to segmentation
models training in a federated setting.

VIII. DISCUSSION

We selected a realistic dataset closely resembling a defense
scenario; however, its relatively small size, only a few hun-
dreds of instances, posed certain limitations. Conducting our
study on a small dataset constrained our ability to thoroughly
investigate the effects of varying the number of clients. To en-
sure local learning remained meaningful, we had to introduce
substantial overlap among the datasets assigned to the shadow
clients (in scenarios involving a proactive attacker server). This
necessity resulted in overfitting on the data utilized by these
shadow models, which in turn compromised the effectiveness
of FedMIA’s strategy, as it relies significantly on the behavior
of non-targeted client models. Expanding our research to

encompass a larger dataset appears to be an exciting follow-
up. Employing non-overlapping datasets for the shadow clients
will likely improve the performance of FedMIA approach.
Conversely, providing the target client with a more substantial
amount of data may reduce the overall success rate of the
attack.

Regarding the feasability, the main limitation for a mem-
bership inference attack is the access to the target dataset.
To determine whether a given data point is a member of
a client’s training dataset, the server must have access to
data highly similar to that client’s data. Consequently, such
attacks are more relevant in evaluation settings for assessing
the privacy risks of federated learning configurations than in
practical, real-world scenarios. However, in cases where the
server has some prior knowledge about the target client’s data
distribution, it may be possible to collect sufficiently similar
data to enable these attacks. Passive scenarios are particularly
feasible in the absence of defense mechanisms, as they require
low computational resources. Moreover they do not interfere
in the FL process, they have no impact on the learned model.
In contrast, proactive scenarios are feasible only for servers
with significant computational resources and access to large
datasets for training shadow models. Moreover, these attacks
impact the learned model since the server would deviate from
standard federated learning protocols by aggregating its own
models.

CONCLUSION

We present the first analysis of membership inference at-
tacks on federated binary segmentation models. Our results
show that gradient-based attacks (Cosine Similarity and Fed-
MIA Cosine), can effectively exploit training signals, particu-
larly as the number of clients increases or when the server
adopts a more proactive strategy by artificially introducing
additional clients. Despite the limitation of a small dataset
in our experimental settings, we were nonetheless able to
effectively demonstrate privacy breaches.

These results underscore the critical need for robust defense
mechanisms in federated learning, as, in the absence of such
protections, servers are able to extract significant information
about individual client datasets.

Finally, extending these attacks to multi-class semantic
segmentation with large datasets and empirically assessing
the practical cost of deploying defense mechanisms would
offer a clearer picture of the trade-offs involved in protecting
federated segmentation models.
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