
Breaking SafetyCore: Exploring the Risks of
On-Device AI Deployment

Guyomard Victor
Skyld AI

Rennes, France
victor.guyomard[at]skyld.io

Mathis Mauvisseau
Skyld AI

Rennes, France
mathis.mauvisseau[at]skyld.io

Paindavoine Marie
Skyld AI

Rennes, France
marie[at]skyld.io

Abstract—Due to hardware and software improvements, an
increasing number of AI models are deployed on-device. This
shift enhances privacy and reduces latency, but also introduces
security risks distinct from traditional software. In this article,
we examine these risks through the real-world case study of
SafetyCore, an Android system service incorporating sensitive
image content detection. We demonstrate how the on-device AI
model can be extracted and manipulated to bypass detection,
effectively rendering the protection ineffective. Our analysis
exposes vulnerabilities of on-device AI models and provides a
practical demonstration of how adversaries can exploit them.

Index Terms—Reverse engineering, Model extraction, Adver-
sarial examples

I. INTRODUCTION

Today, an increasing number of AI1 models are deployed
on-device. This trend is driven by the growing computational
power of modern hardware, especially with the adoption of
specialized components like Neural Processing Unit (NPU)[1].
Moreover, advancements in AI software, such as quantization,
have reduced both the size of models and the computational
power required to run them, making on-device deployment
more feasible and efficient. This form of deployment offers
key advantages such as improved data privacy, since data is
processed directly on the device, and reduced latency, as infer-
ence no longer depends on an internet connection[2]. However,
while on-device AI deployment is becoming more popular, its
security implications are still often misunderstood, especially
when considering how AI differs from traditional software.
This gap in understanding can lead to serious vulnerabilities
particularly when AI is used in security applications such as
content filtering or spam detection.

In this article, we explore the security risks associated with
on-device AI deployment through the lens of a real-world
case study: the exploitation of the SafetyCore application[3].
SafetyCore is an Android Google system service introduced in
November 2024. It provides a service used by other Android
applications: The classification of sensitive or problematic
content, such as nudity in images. The content detection is
performed using an AI based algorithm that is locally embed-
ded on the device for privacy-preserving reasons. This means
that the user data is not sent to a remote server, but is kept on

1In this article, we use the term AI to specifically refer to deep learning
neural networks.

Fig. 1. User interface of the Google Messages application with SafetyCore
enabled. When nudity is detected by the AI model, the image is blurred and
a warning message is displayed to the user.

the device. Currently, SafetyCore is only used by the Google
Messages application for content moderation. However, other
applications, such as WhatsApp[4], are expected to adopt it
in the near future. The AI model used by SafetyCore takes
an image as input and predicts whether it contains sensitive
content or not. If such content is detected, the image is
automatically blurred, and a warning message is displayed
to inform the user that the image may contain unwanted
characteristics, such as nudity. An example of the application
behavior is shown in Figure 1.

SafetyCore relies on the AI model’s ability to make accurate
predictions based on pixel values in the image. Starting with
the extraction of the embedded model, we demonstrate how
adversaries can manipulate images to cause misclassifications,
thereby rendering the protection mechanism ineffective. The
objectives of this article are twofold:

• Explaining the specific risks of deploying AI models on-
device, especially for readers without a background in
AI.



• Providing a practical guide to extracting and exploiting
these models in a real-world setting.

Each aspect of our analysis is illustrated using the SafetyCore
attack case study. This attack has been performed on a Google
Pixel 6, running Android 15 (build BP1A.250305.019)
with SafetyCore (com.google.android.safetycore)
version 1.0.757930370.

We begin this article by examining the specific methods
for reverse-engineering an AI model and discuss what makes
AI models fundamentally different from traditional software.
We then describe the pre-processing and conversion steps
necessary to turn an extracted model into a targeted object.
Finally, we explore intrinsic vulnerabilities of AI models and
demonstrate how they can be exploited through AI based
attacks.

II. THE REVERSE ENGINEERING CHALLENGE

This Section explores what makes AI models fundamentally
different from standard code, and why traditional software
protections are often insufficient to secure them from reverse-
engineering.

A. What is Inside an AI Model?

The goal of an AI model is to perform a given task
(prediction, generation) on data never seen before. It is defined
by an architecture composed of layers, hyperparameters and
learned parameters. Layers represent mathematical operations,
often linear transformations such as matrix multiplications.
Each layer has hyperparameters, whose values are fixed before
training and remain unchanged. In contrast, the learned param-
eters, such as weights and biases, are updated throughout the
training process so that the model can perform its task on new
data. An example of a toy AI model is provided in Figure 2.
The lifecycle of an AI model can be divided into two phases:
training and inference. Training is the step where the learned
parameters are updated, i.e. the network learns to adapt itself
to new data. The inference step is when the model is used
to perform some prediction on unseen data. At this stage, the
learned parameters are fixed and no longer updated.

B. Why AI Models are Different from Classical Software?

Software is typically made of code that is compiled and
deployed. This means that only the hardware instructions
are present on the deployment target. On the other hand,
an AI model is usually stored in a file. This file does
not directly contain the hardware instructions, as traditional
software does, but rather a serialized version of the algorithm.
This serialized file defines the layer operations as well as
the learned parameters needed to produce the model output.
The specific implementation of those operations is handled by
a separate inference engine. To parse and run a model, the
inference engine associated with the model is required.

The operations used during inference are implemented by
the inference engine. Thus, a model can only use a limited
set of standardized layers. When an AI model is run, the
executed operations came from the same finite set of

Fig. 2. Example of a toy AI model (in ONNX format). Each node
of the graph corresponds to a specific layer. The first node is a con-
volution layer that contains learned parameters W, b and hyperparameters
dilation, kernelShape, pads, stride.

layers, regardless of the specific model architecture or
parameters values. The inference engine is contained in a
compiled library and defines how the model is serialized.
A limited set of inference engines are often used to
deploy AI models, and most of them are open-source.
This is because layer implementations are highly optimized
for specific hardware, making it inefficient and unnecessary
for each company developing AI models to re-implement them
from scratch for all standard hardwares[5].

While this standardization is beneficial for performance and
cross-platform compatibility, it raises significant challenges
regarding intellectual property protection.

C. Static Extraction

The first method to reverse engineer a model is to perform
a static analysis (i.e., analysis without running the application)
of the application to locate and extract AI models. Since seri-
alization depends on the specific library used, it is important to
understand the different libraries and their formats. The major
inference engines used when deploying an AI model on-device
include LiteRT[6] (formerly TensorFlow Lite), ONNX[7], and
PyTorch (through TorchScript[8] and ExecuTorch[9] formats).
Each of these engines reads AI models from a file that
has distinctive identifiable characteristics. This makes it
relatively easy to locate such files within a software package,
enabling static file analysis. Table I lists the different charac-
teristics that can be searched for in the files of an application
to locate AI models.

a) The SafetyCore case: In the case of SafetyCore,
static analysis of the service’s downloaded files revealed a
TensorFlow Lite model. The presence of the ASCII-encoded
magic value TFL3 at byte offset 4 led to a quick identification
of the model file.



TABLE I
CHARACTERISTICS TO IDENTIFY AI MODELS USED BY MAJOR INFERENCE ENGINES.

Inference engine Characteristic
LiteRT / TensorFlow Lite FlatBuffers file identifier* TFL3 (ASCII encoded)
ONNX Protobuf containing the graph. Each layer type starts with onnx::
TorchScript ZIP archive (file signature PK\x03\x04) containing:

• The directories:
– code
– data

• The files:
– data.pkl
– constants.pkl

ExecuTorch FlatBuffers file identifier* ET?? followed by eh?? (ASCII encoded), where ? is a digit.

*The FlatBuffers file identifier is a field in the FlatBuffers serialization format.

D. Dynamic Extraction, or Why Encryption Is Not Enough

In some cases, the AI model in plain-text form never touches
persistent storage. For instance, when it is downloaded (remote
loading) and loaded directly into memory for each inference,
or stored only in encrypted form (model encryption).

• Remote loading avoids static interception of the model
file as it is never stored in persistent storage.

• Model encryption effectively hides the file structure,
making it impossible to locate using known character-
istics of the model while performing a static analysis.

In such situations, dynamic analysis can be used to intercept
the serialized model at runtime, capturing it while it is being
loaded into the inference engine. This was not the case for
SafetyCore, where the model was recovered through static
analysis. In practice, encryption and remote loading can be
bypassed, and the model extracted using dynamic analysis.
While having privileged access on the running device, in-
strumentation tools such as Frida[10] can be used to hook
the model loading functions and exfiltrate the model during
execution. Since most inference engines are open source, it
is relatively easy to identify and hook the model loading
function, even if it is not directly exposed by the library.

III. AI MODEL REFINEMENT

After this first reverse-engineering step, an AI model often
requires refinement before it can be effectively exploited.

A. Convert to the Right Format

Extracted AI models are often not immediately usable
by attackers, because they are deployed in formats that
do not support gradient computation (Additional details
about gradients are provided in Section IV-A). PyTorch is
the most widely used framework for attacking AI models. In
contrast, formats such as TFLite and ONNX do not natively
allow gradient computation, making them not suitable for
direct exploitation. Therefore, converting the extracted model
to PyTorch is typically a necessary step. This conversion
can often be achieved using available tools, either directly or
through a combination of intermediate formats. In Table II is
presented common AI model formats and the corresponding
tools used to convert them into PyTorch.

Original Format Conversion Tool(s)
ONNX onnx2pytorch[11]
TFLite (tf2onnx + onnx2pytorch) via REOM[12]
TorchScript Natively exploitable
ExecuTorch Not currently supported*

TABLE II
CONVERSION TOOLS FOR ENABLING PYTORCH BASED ATTACKS ON

EXTRACTED AI MODELS.

*Primarily due to the novelty of the framework compared to more
mature alternatives such as TFLite.

B. The Quantization Problem

Quantization refers to the process of converting the learned
parameters of an AI model from high-precision floating-point
(typically float32) to lower-precision formats such as 8-bit
integers (typically int8)[13]. This transformation reduces both
memory usage and computational cost, making it particularly
suitable for on-device deployment, where hardware resources
are limited[13].

The most widely used approach is affine quantization. This
method relies on two quantization parameters:

• a scale factor s ∈ R+.
• a zero point z ∈ Z.

These parameters are used both to:
• Convert (quantize) the original float32 parameters to

integers.
• Compute operations directly in the quantized domain

(integer domain).
Given a real-valued parameter w ∈ R, its quantized represen-
tation wq ∈ Z[αq,βq ] is computed as:

wq = clip
(

round
(1
s
w + z

)
, αq, βq

)
Since the model no longer operates on differentiable float32

parameters, standard gradient-based techniques cannot be di-
rectly applied to a quantized model. However, it is important
to note that quantization does not act as a security mech-
anism. The combination of quantized parameters and their
associated scale and zero point is sufficient to reconstruct an
approximation of the original parameters. For w ∈ R we have:

w ≈ dequantize(wq, s, z) = s · (wq − z) (1)

https://flatbuffers.dev/schema/#file-identification-and-extension


Using this equation, an attacker can construct a proxy model,
i.e., a model that approximates the behavior of the original one.
This proxy model is fully differentiable and can be attacked
using standard gradient-based methods.

a) The SafetyCore case: In the case of the SafetyCore
application, the target model was provided in the TFLite for-
mat. As shown in Table II, REOM[12] allows the conversion
of a TFLite model to PyTorch by leveraging a combination
of two intermediate conversion tools. Additionally, REOM
integrates a quantization module that applies Equation 1 to
recover float32 parameters from int8 parameters, enabling
the construction of the proxy model. The tool successfully
generated a float32 proxy model that could be subjected to
further attacks2.

IV. EXPLOITING AI MODELS

After transforming a model into a usable artifact, we analyze
the vulnerabilities of AI systems and the unique security
challenges they pose. We then present how to exploit these
vulnerabilities through adversarial examples. Finally, we dis-
cuss additional attacks that are relevant once an AI model is
extracted.

A. Intrinsic Vulnerability of AI Models
The intrinsic vulnerability of AI relies on three intricate

problems:
a) Gradient manipulation: A neural network is a highly

complex function that takes an input and, using a set of
parameters, produces an output. These parameters must be
learned in order for the model to generate meaningful results.
To learn these parameters, we define an auxiliary function, the
loss function, which tells us how much the model is wrong
in its prediction. For instance, in an image classification task,
the loss function could quantify how inaccurately the model
distinguishes between images of cats and dogs. The goal is
typically to minimize this loss function. Training the model
involves updating its parameters to reduce the loss, using a
dataset of input/output pairs (known as the training set). This
process is often performed using an algorithm called gradi-
ent descent, which iteratively adjusts the parameters in the
direction that reduces the loss. The gradient is a mathematical
object that indicates how to change the parameters to minimize
the loss.

During the training phase, the gradients are computed with
respect to the model parameters to minimize the loss. Once the
model is trained, however, an attacker can instead compute
gradients with respect to the input, this time to maximize
the loss i.e. make the model’s prediction as wrong as
possible. In this setting, the gradient reveals how the input
should be perturbed to mislead the model. Because neural
networks are highly complex and operate in high-dimensional
input spaces, these perturbations can be crafted so that they
remain imperceptible to humans, making them particularly
dangerous.

2For our proxy model, we did not add additional layers to simulate
quantization errors, as we observed no significant differences between the
quantized and the reconstructed model.

b) The black-box problem: Despite their remarkable per-
formance, AI models are black-boxes in the sense that the
decision-making process is not understandable by humans[14].
In other words, given a particular input, we often cannot
understand why the model produces a specific output[15].
Although the field of explainable AI (XAI) has made sig-
nificant progress, it remains difficult to predict how a model
will behave on unseen or slightly altered inputs. This inherent
opacity creates “gray areas” of unpredictable or unintuitive
behavior that are exploitable. These unpredictable behaviors
are not easily identifiable or interpretable by human
observers, making them ideal entry points for adversarial
manipulation.

c) Features correlation: AI models typically rely on
statistical correlations in the training data rather than causal
relationships. This distinction is critical: a model might learn
that “A” often co-occurs with “B,” without grasping whether
“A” causes “B.” This reliance on correlation rather than
causation contributes to unexpected and or unintelligible
model behavior that can bypass human judgment.

B. Exploiting These Vulnerabilities

The vulnerabilities presented above can be exploited in
multiple ways across the AI lifecycle. In this Section, we focus
on concrete attack strategies that target on-device AI models
when having access to the architecture and parameters.

a) Inferring the loss function: Many attacks rely on
gradient computations, which not only require knowledge of
the model’s architecture and parameters but also defining a
suitable loss function. The choice of this loss function is driven
by the identification of the task the model is solving, for exam-
ple a binary classification task. A common attack strategy
is to identify the loss that was used for model training,
and use the opposite for attacking (in order to maximize
it). While this information is typically unavailable after
deployment, attackers can often infer it through careful
analysis of the architecture and model behavior.

This process typically involves the following steps:
1) Architecture probing: By analyzing the metadata (e.g.,

input/output shapes, presence of specific layers such
as convolutions or residual blocks, and even embedded
strings in the model file), one can make educated guesses
about the model architecture and its intended task. For
some model formats, such as TFLite or ONNX, the
overall architecture can be visualized using a visualization
tool like Netron3.

2) I/O probing: By feeding the model with various sample
inputs and observing the output responses, one can un-
derstand the appropriate input format and the semantics
of the outputs (classification scores, images, heatmaps
etc. . . ).

3) Output layer inspection: The final activation function
often reveals the nature of the learning problem. A
softmax activation suggests a classification task, and a

3http://netron.app

http://netron.app


sigmoid (logistic) activation a multi-label classification
task. A linear output usually indicates regression.

b) The SafetyCore case: In the case of the SafetyCore,
the input tensor shape is 1×224×224×3, which strongly sug-
gest image data. The architecture includes residual connections
common in ResNet architectures[16] for image classification.
The output shape is 1× 4, and when probing the model with
explicit versus non-explicit images, we observe that explicit
content causes some output values to exceed 0.5, while benign
content remains below this threshold. This, along with the
presence of a sigmoid activation function before the output,
suggests that the model is solving a multi-label classification
problem, and was trained using a binary cross-entropy loss.
This inferred loss enables the attacker to compute gradients
for further manipulations.

1) Adversarial Examples: The philosophy behind adver-
sarial examples involves defining a desired criterion on the
model’s output through a loss function, and then using
model gradients to find an input modification that satisfy
this criterion. This attack relies mostly on the properties
of high dimensional spaces and the nature of the functions
learned by deep learning models. In these spaces, a tiny per-
turbation, when applied in a specific direction (using gradient),
can often cause a significant change in the model’s output.

Generally, the input change is sought to be imperceptible
and to maximize the model’s output change[17]. For classifiers
this could mean altering a picture of a panda so that the model
confidently predict a gibbon[17]. There are two main types of
adversarial attacks:

• Untargeted attacks: The goal is to mislead the model,
regardless of what that incorrect output is.

• Targeted attacks: The goal is to produce a pre-
determined output. The attacker doesn’t just want the
model to be wrong, he wants it to produce a particular
output.

For generating these examples, a diverse range of at-
tack algorithms has been developed, from the fast gradient
sign method (FGSM)[17] to more iterative and powerful
methods like Projected Gradient Descent (PGD)[18], each
with different trade-offs in terms of computational cost and
effectiveness[19].

It is important to note that the effectiveness of adversarial
examples depends on the data modality of the input. They
are particularly effective on continuous data, such as images
and audio, where small perturbations can be applied directly
to the input using gradient-based methods[18]. In contrast,
generating adversarial examples for discrete data (like text) is
more challenging, as it is difficult to generate discrete changes
in a meaningful way using gradients[20]. However, many
text models include both discrete and continuous components.
In such cases, it is often possible to generate adversarial
perturbations in the continuous space and then extrapolate
them back to the discrete space[20].

Adversarial examples are extremely powerful in practice.
Because of the high dimensionality of the input space, it is

not feasible to simply “patch” a given adversarial example by
specifically instructing the model to ignore it during training.
Doing so leaves the model vulnerable to countless regenerated
variants that came from the same region of the input space.
A common defense strategy is adversarial training[21], which
involves incorporating multiple adversarial examples in the
model training. While it offers a potential defense, it remains
difficult to fully mitigate the threat, as this approach often
involves a trade-off with model performance[21].

a) The Safetycore case: For SafetyCore, we implemented
a Projected Gradient Descent (PGD) attack, a widely used
method known for its effectiveness in white-box setting (e.g
when access to the model parameters).

This allows two types of attacks:
1) False Positive (Enable Blurring): You can start from

a non-explicit image and generate a small, imperceptible
perturbations to make the model predicting it as explicit.
As a result, SafetyCore will apply blurring to an image
that should not be blurred.

2) False Negative (Bypass Blurring) Yo can also start
from an explicit image. This image will contains a small
perturbation that prevent the model from recognizing it
as explicit. Consequently, SafetyCore will not apply any
blurring to it, effectively bypassing the protection.

In Listing 1 a PyTorch implementation of the attack script is
provided. This script is intended to be simple and as generic as
possible and can be reused on other models as long as the input
data is continuous, and a loss function can be chosen. The most
important parameters of this script are ϵ and num iter.

• ϵ control the maximum change per pixel that is expected
for the perturbed input. Higher values mean higher pixels
variations and then more visible perturbations. You can
gradually increase ϵ until you find a sample with the
expected model output.

• num iter control the number of iteration (number of
gradient steps) that are taken during the attack. A higher
number of iterations allows finding a more effective ad-
versarial example in terms of loss function maximization.

Before running the attack script, the input images are resized
to 1× 224× 224× 3 to match the model’s input dimensions.
The resulting adversarial examples have the same size and
are saved in a .png format. It is important to use an image
format that does not apply compression in order to preserve the
adversarial perturbation (avoiding JPEG, which would remove
part of the added noise).

In Figure 3, we show three benign images that have been
perturbed using PGD (Enable Blurring case). When passed
through the originally extracted model, these adversarial im-
ages are misclassified as explicit content. In Figure 3, we also
present a screenshot from the Google Messages app showing
how these images appear to users: all are blurred with a
warning about potential explicit content. You can imagine the
same scenario with explicit images that will not be blurred
in the application (Bypass Blurring). For ethical reasons, this
case is not illustrated in the article. Executing an “enable



Fig. 3. Adversarial attack on SafetyCore. On the left, are provided the
perturbed images obtained after a PGD attack, and on the right what appears
in the Google Message application when sent to an Android device.

blurring attack” or a “bypass blurring attack” follows the same
methodology, allowing the adversary to choose either at will.

The implications of this attack are severe: since the same
AI model is shared across all Android devices, it is possible
to fully bypass the filtering capabilities, regardless of the
input. This attacks takes less than 30 lines of code.

2) Additional Relevant Attacks: Even if it is very powerful,
adversarial examples generation is not the only relevant attack
that can be performed after extracting an AI model. In this
Section we presented two additional types of methods that
can be applied.

a) Model inversion: Model inversion attacks aim to
reconstruct representations of the training data by using the AI
model itself[22]. Typically, these attacks exploit model gradi-
ents to iteratively optimize an input that maximizes the model’s
confidence[22]. This technique is most commonly applied to
classification tasks, where the goal is to generate inputs that
are representative of a target class. The consequences can
be severe, often resulting in the leakage of private data for
example, reconstructing faces that were used to train a facial
recognition model. Additionally, model inversion can provide
insights into the task the model was trained on. For instance,
if the reconstructed inputs resemble airplanes and the model
architecture indicates a classification task, one can reasonably
infer that the model is likely classifying different types of
planes from images.

In the context of SafetyCore, we attempted a model inver-
sion attack. However, the optimization process quickly col-
lapsed. This failure can be attributed to two main factors. First,
the training data for each class is probably highly diverse,
making it difficult for the model to converge toward a shared
representation. Second, the task is a multi-class classification
problem, which further complicates the inversion process, as
each class may share overlapping features with others.

b) Backdoor Attacks: Backdoor attacks involve poison-
ing the training data with specially crafted samples that cause
the model to learn spurious correlations between a trigger

pattern and a specific output[23]. When the attacker later
inputs a sample containing the same trigger, the model exhibits
the intended behavior[23].

This type of attack exploits two vulnerabilities described in
Section IV-A:

• The model is learning arbitrary associations (like small
patch for images) that have no causal relation to the task.

• The black-box nature of AI means that such malicious
correlations are difficult to interpret or detect after train-
ing.

In the case of SafetyCore, this type of attack may be unnec-
essary, as adversarial examples can achieve the same effect
without requiring the model to be retrained. Moreover, there
is no indication that the submitted images will be used for
future training. In fact, since the model runs entirely on-
device, retraining seems unlikely. However, unlike adversarial
examples, which may not transfer to new model versions,
backdoor examples are more likely to persist. Indeed, as
backdoors are difficult to detect in training data, such examples
could remain in future training sets, potentially preserving the
backdoor across versions.

1 import torch
2 from torch import nn
3

4 def pgd_attack(
5 model, inputs, targets, epsilon=0.01, alpha

=0.005, num_iter=100,
6 loss_fn=None, random_start=True, clip_min=0.0,

clip_max=1.0):
7 """
8 Projected Gradient Descent (PGD) attack on a

PyTorch model.
9

10 Parameters:
11 -----------
12 model : torch.nn.Module
13 The neural network to attack.
14 inputs : torch.Tensor
15 Original input images or continuous data to

perturb.
16 TODO: Replace by your own input
17 targets : torch.Tensor
18 Ground truth labels corresponding to the

inputs.
19 epsilon : float
20 Maximum perturbation allowed (L-infinity

norm).
21 alpha : float
22 Step size for each iteration.
23 num_iter : int
24 Number of attack iterations.
25 loss_fn : callable, optional
26 Loss function to maximize (defaults to

BCELoss if None).
27 TODO: Replace by your own loss function
28 random_start : bool
29 If True, start from a random point within

the epsilon-ball around the input.
30 clip_min : float
31 Minimum allowed value for perturbed inputs.
32 clip_max : float
33 Maximum allowed value for perturbed inputs.
34

35 Returns:
36 --------
37 torch.Tensor



38 Adversarially perturbed inputs.
39 """
40 model.eval()
41 original_inputs = inputs.clone().detach()
42

43 if random_start:
44 # Start from a random point within the

epsilon-ball
45 adv_inputs = original_inputs + torch.

empty_like(inputs).uniform_(-epsilon, epsilon)
46 adv_inputs = torch.clamp(adv_inputs,

clip_min, clip_max)
47 else:
48 adv_inputs = original_inputs.clone().detach

()
49

50 if loss_fn is None:
51 # Loss function used for the attack
52 # TODO: Replace by your own loss function
53 loss_fn = nn.BCELoss()
54

55 for _ in range(num_iter):
56 adv_inputs.requires_grad_(True)
57 outputs = model(adv_inputs)
58 loss = loss_fn(outputs, targets)
59

60 model.zero_grad()
61 loss.backward()
62 grad_sign = adv_inputs.grad.detach().sign()
63

64 adv_inputs = adv_inputs + alpha * grad_sign
65 # Project back to the epsilon-ball and clip

to valid range
66 perturbation = torch.clamp(adv_inputs -

original_inputs, min=-epsilon, max=epsilon)
67 adv_inputs = torch.clamp(original_inputs +

perturbation, clip_min, clip_max).detach()
68

69 return adv_inputs

Listing 1. Small generic Python code for generating adversarial examples
with PGD

V. CONCLUSION

Security should serve as a cornerstone for building trust in
AI systems. In this paper, we explored the risks of deploying
AI models on-device through the lens of the SafetyCore
application. Our work demonstrates that once adversaries gain
access to the model, it can be compromised with relative
ease and rendered ineffective, raising important concerns for
the security of on-device AI based applications. While on-
device AI enables countless use cases, its specific security
challenges are still overlooked, even by major players in the
field as illustrated by the SafetyCore example. This work
acts as a foundation for understanding and running attacks
on on-device AI models, and can be extended to a wide
range of applications. In future work, we plan to extend our
methodology to more data modalities and use-cases.

REFERENCES

[1] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S.
Emer. Efficient processing of deep neural networks: A
tutorial and survey. Proceedings of the IEEE, 105(12):
2295–2329, 2017. doi:10.1109/JPROC.2017.2761740.

[2] Kimberly Jane. Edge ai devices for multimodal document
intelligence: Designing low-latency, privacy-preserving
systems for on-device fraud prevention. 03 2025.

[3] Google. Safetycore (android system), 2025. URL
https://play.google.com/store/apps/details?id=com.
google.android.safetycore&hl=fr.

[4] Stan Kaminsky. Whatsapp integration,
2025. URL https://www.kaspersky.fr/blog/
what-are-android-safetycore-and-key-verifier/22653/.

[5] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel
Emer. Efficient processing of deep neural networks:
A tutorial and survey, 2017. URL https://arxiv.org/abs/
1703.09039.

[6] Google. Litert inference engine, 2025. URL https://ai.
google.dev/edge/litert?hl=fr.

[7] Microsoft. Onnx inference engine, 2025. URL https:
//onnx.ai/.

[8] Meta. Torchscript inference engine, 2025. URL https:
//docs.pytorch.org/docs/stable/jit.html.

[9] Meta. Executorch inference engine, 2025. URL https:
//docs.pytorch.org/executorch/stable/index.html.

[10] Frida. https://frida.re/. Dynamic instrumentation toolkit.
[11] ENOT developers, Igor Kalgin, Arseny Yanchenko, Py-

oter Ivanov, and Alexander Goncharenko. onnx2torch.
https://enot.ai/, 2021. Version: x.y.z.

[12] Mingyi Zhou, Xiang Gao, Jing Wu, Kui Liu, Hailong
Sun, and Li Li. Investigating white-box attacks for on-
device models, 2024. URL https://arxiv.org/abs/2402.
05493.

[13] Markus Nagel, Marios Fournarakis, Rana Ali Amjad,
Yelysei Bondarenko, Mart van Baalen, and Tijmen
Blankevoort. A white paper on neural network quan-
tization, 2021. URL https://arxiv.org/abs/2106.08295.

[14] Zachary C. Lipton. The mythos of model interpretability,
2017. URL https://arxiv.org/abs/1606.03490.

[15] Victor Guyomard, Françoise Fessant, Tassadit Bouadi,
and Thomas Guyet. Post-hoc counterfactual generation
with supervised autoencoder. pages 105–114, 2021.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 770–778, 2016.
doi:10.1109/CVPR.2016.90.

[17] Ian J. Goodfellow, Jonathon Shlens, and Christian
Szegedy. Explaining and harnessing adversarial exam-
ples, 2015. URL https://arxiv.org/abs/1412.6572.

[18] Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
deep learning models resistant to adversarial attacks,
2019. URL https://arxiv.org/abs/1706.06083.

[19] Joana C. Costa, Tiago Roxo, Hugo Proença, and Pedro
Ricardo Morais Inácio. How deep learning sees the
world: A survey on adversarial attacks & defenses.
IEEE Access, 12:61113–61136, 2024. ISSN 2169-3536.
doi:10.1109/access.2024.3395118. URL http://dx.doi.
org/10.1109/ACCESS.2024.3395118.

[20] Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. Hotflip: White-box adversarial examples for text
classification, 2018. URL https://arxiv.org/abs/1712.

https://doi.org/10.1109/JPROC.2017.2761740
https://play.google.com/store/apps/details?id=com.google.android.safetycore&hl=fr
https://play.google.com/store/apps/details?id=com.google.android.safetycore&hl=fr
https://www.kaspersky.fr/blog/what-are-android-safetycore-and-key-verifier/22653/
https://www.kaspersky.fr/blog/what-are-android-safetycore-and-key-verifier/22653/
https://arxiv.org/abs/1703.09039
https://arxiv.org/abs/1703.09039
https://ai.google.dev/edge/litert?hl=fr
https://ai.google.dev/edge/litert?hl=fr
https://onnx.ai/
https://onnx.ai/
https://docs.pytorch.org/docs/stable/jit.html
https://docs.pytorch.org/docs/stable/jit.html
https://docs.pytorch.org/executorch/stable/index.html
https://docs.pytorch.org/executorch/stable/index.html
https://frida.re/
https://enot.ai/
https://arxiv.org/abs/2402.05493
https://arxiv.org/abs/2402.05493
https://arxiv.org/abs/2106.08295
https://arxiv.org/abs/1606.03490
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1706.06083
https://doi.org/10.1109/access.2024.3395118
http://dx.doi.org/10.1109/ACCESS.2024.3395118
http://dx.doi.org/10.1109/ACCESS.2024.3395118
https://arxiv.org/abs/1712.06751


06751.
[21] Weimin Zhao, Sanaa Alwidian, and Qusay H. Mahmoud.

Adversarial training methods for deep learning: A sys-
tematic review. Algorithms, 15(8), 2022. ISSN 1999-
4893. doi:10.3390/a15080283. URL https://www.mdpi.
com/1999-4893/15/8/283.

[22] Matt Fredrikson, Somesh Jha, and Thomas Risten-
part. Model inversion attacks that exploit confidence
information and basic countermeasures. In Proceed-
ings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’15, page
1322–1333, New York, NY, USA, 2015. Association
for Computing Machinery. ISBN 9781450338325.
doi:10.1145/2810103.2813677. URL https://doi.org/10.
1145/2810103.2813677.

[23] Yang Bai, Gaojie Xing, Hongyan Wu, Zhihong Rao,
Chuan Ma, Shiping Wang, Xiaolei Liu, Yimin Zhou,
Jiajia Tang, Kaijun Huang, and Jiale Kang. Backdoor
attack and defense on deep learning: A survey. IEEE
Transactions on Computational Social Systems, 12(1):
404–434, 2025. doi:10.1109/TCSS.2024.3482723.

https://arxiv.org/abs/1712.06751
https://doi.org/10.3390/a15080283
https://www.mdpi.com/1999-4893/15/8/283
https://www.mdpi.com/1999-4893/15/8/283
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1109/TCSS.2024.3482723

	Introduction
	The Reverse Engineering Challenge
	What is Inside an AI Model?
	Why AI Models are Different from Classical Software?
	Static Extraction
	Dynamic Extraction, or Why Encryption Is Not Enough

	AI Model Refinement
	Convert to the Right Format
	The Quantization Problem

	Exploiting AI Models
	Intrinsic Vulnerability of AI Models
	Exploiting These Vulnerabilities
	Adversarial Examples
	Additional Relevant Attacks


	Conclusion

