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Abstract—Synthetic Aperture Radar (SAR) imaging supports
applications from environmental monitoring to defence. For Au-
tomatic Target Recognition (ATR), Deep Learning (DL) delivers
strong results but needs large datasets, and SAR data is scarce
due to cost and confidentiality. A common workaround is training
on synthetic data generated by simulators and Computer-Aided
Design (CAD) models, but these simplify complex electromagnetic
effects, creating a domain shift between training (synthetic) and
test (measured) domains. Although Data Augmentation (DA)
is used to improve representativeness and robustness, many
methods lack semantic, physics-informed changes to improve
recognition performance. In this paper, we propose a physics-
based DA to address the Synthetic-to-Measured (S2M) gap, first
validating physical parameter extraction from measured images
and then leveraging this knowledge to improve ATR. Training
solely on synthetic data, our approach achieves 70.97% accuracy.

Index Terms—ATR, classification, synthetic data, MOCEM,
SAR, data augmentation, ASC, deep learning, MSTAR.

I. INTRODUCTION

Synthetic Aperture Radar (SAR) Automatic Target Recogni-
tion (ATR) is often used in many real-world applications where
object identification is required via a classification system.
Deep learning-based SAR ATR has achieved increasingly high
performance in the past few years, particularly on the open
Moving and Stationary Target Acquisition and Recognition
(MSTAR) dataset under standard operating conditions (SOCs).
As a matter of fact, deep neural networks have proven in-
dispensable for tackling the complex task of classifying SAR
images due to the multiple electromagnetic effects they exhibit.

Most of the studies generally show cases where the test
conditions are close to the learning conditions using measured
data from neighbouring depression angles (15° versus 17°
most of the time). This case, although effective, is rarely
adapted to real operational conditions where exact target
information is rare or even unavailable, and where learning on
synthetic data is recommended (or even required). However,
synthetic data are based on simulators that cannot accurately
reproduce all the effects present in the measured data and
cannot cover all the variability found under real operating
conditions. As a result, models trained on these data often
have limited generalisation and robustness potential in the

real world. This is why data augmentation (DA) techniques
are essential, whether to bring synthetic and real data closer
together, to present numerous variations to the model, or
simply to expand the training database. SAR images although
have unique physical properties that set them apart from
optical images, for which most data augmentation techniques
in the literature are designed and which do not always make
physical sense for this type of data (for example, rotations or
affine transformations). Techniques designed specifically for
the optical domain may raise questions, such as:

When does a target cease to be the same? While this
question is more obvious in optics, it is more difficult to
answer when dealing with a SAR image to which transforma-
tions are to be applied. Some transformations, such as affine
transformations, can change the target shape.

How to ensure that the applied transformations are suffi-
cient to cover the target domain? This kind of augmentation
techniques can improve the extraction of features of interest
for classification and provide generalisation ability for data
exhibiting the same type of variability. However, this does not
guarantee robustness to other variations such as pixel level
modification or target state variation (open doors. . . ).

This paper therefore introduces a data augmentation tech-
nique that addresses three issues:

• Improving recognition performance while learning only
from synthetic data,

• Providing a new data augmentation technique for SAR
images,

• Introducing an artificial augmentation that resorts to phys-
ical mechanisms and that is interpretable.

The proposed SAR augmentation process draws on physical
knowledge based on scattering mechanisms. The objective of
this method is to confront synthetic training databases with
real measurements in order to achieve better performance and
robustness of SAR ATR algorithms. We believe that the use of
physics-based transformations can improve the guarantee that
the algorithm will work in real-world conditions and cover the
domain of use, by providing interpretable augmented samples.
The paper is presented as follows. Section II introduces back-
ground and related works. Section III brings in our approach



and presents the methodology adopted for carrying out this
work. Section IV shows the results of the data analysis and
details the results obtained for SAR ATR on the MSTAR
dataset. Section V addresses the limitations of the proposed
method. Finally, Section VI concludes the paper and discusses
future work.

II. RELATED WORKS

When training machine learning algorithms, it is typically
assumed that the data distribution of the training and test sets
is consistent. Nevertheless, this assumption often fails to hold
in practical applications and in particular when training is
performed on synthetic data [3]. Indeed, even though simu-
lation models are particularly efficient in providing physically
accurate SAR images, they are only simplified representations
of the complex mechanisms that form the signature of targets
in images [2], leading to residual discrepancies between mea-
sured and synthetic images. For example, Fig. 1 illustrates a
visible domain gap between synthetic and real images.

Fig. 1. Domain Gap Example: 2S1 target (azimuth 358°). Images are
displayed with the same colour range with the QPM LUT.

Domain generalisation and domain adaptation are areas of
research aiming at alleviating this issue, often referred to as
domain shift or gap. To do so, several strategies have been
proposed in the literature to make models able to generalise,
to an unseen domain (also called target domain – measured
samples in our case), using a known domain (also called
source domain – synthetic samples in our case). They can
be primarily categorised into three types [3], being domain
alignment, meta-learning, and data augmentation, but we are
going to focus on the last one in this paper. More specifically,
data augmentation is the process of artificially generating new
data from existing data.

Particularly for the SAR S2M domain gap, we can name
two different (non-exhaustive) data augmentation strategies:

Image-level augmentation. According to [3], it creates new
examples similar to the original images but does not explicitly
focus on the concept of domain by performing a series of
transformations or noise addition to the original images in
the training set. For example, in [5], Inkawhich et al. tested
and compared several data augmentation techniques such as
rotation and the addition of Gaussian noise and analysed their
impact on saliency and feature-space representation. Similarly,
in his PhD work, Denton [6] proposed an alpha blending
approach to generate new data points by combining SAMPLE
extracted targets with MSTAR clutter samples.

Domain-level augmentation. According to [3], this type of
data augmentation method tries to increase the breadth of the
training domains and to cover the unseen target domain as
comprehensively as possible by generating a large number
of new samples with diverse distributions. For example, the
authors of [4] directly worked on synthetic and measured
images in order to bring them closer. They observed that the
synthetic and measured images in the SAMPLE dataset are
linearly separable and utilise a linear content erasure method
(LCDE) in order to transform the images and eliminate this
separability. Differently, Camus et al. in [2] proposed a domain
randomisation technique, in order to introduce randomness and
variations into samples within a simulated environment, com-
bined with adversarial training. More recently, they proposed
in [12] an even more advanced image generation pipeline, by
combining their ADASCA block, presented in [2], with two
other kinds of domain-level augmentation: semantic and radar
augmentations using, respectively, their ADAMO and M3D
Exploit tools.

Similarly to our approach, these different works try to bridge
the domain gap between synthetic and measured SAR images.
Nevertheless, we realise that most research papers:

1) either try to characterise and bridge the domain gap by
using learnt transformations (for example [4]), but do not
provide physical comprehension of them (for instance,
synthetic and measured samples exhibit specific target
signature differences),

2) or produce new samples without any guidance, hoping
that the augmented database will cover the target domain
as we assume that more diverse data can help reduce
generalization error (for example [12]).

As a consequence, and as stated in [3], we believe that
addressing the following question is of utmost importance:
"which data augmentation method is most useful in the current
task and why". Indeed, currently, most data augmentation
methods create samples that are not interpretable, such as
adversarial perturbation and adding noise, or without being
able to justify why they will be beneficial. With our approach,
we propose to resort to physical knowledge provided by
Attributed Scattering Centres (ASC) in order to both bridge the
gap between synthetic and measured samples and physically
characterise it. We believe that our approach, combined with
other DA techniques, such as the one of SCALIAN DS [12],
can improve even more recognition performance.

By passing, we found some papers in the literature that
also used attributed scattering centres for data augmentation
(for instance [7], [8]), but they only consider the measured-
measured configuration and do not deal with the synthetic-
measured gap. To our knowledge, this is the first work to
attempt to benefit from ASC to characterise and bridge the
synthetic-to-measured domain gap.

III. METHODOLOGY

Our approach uses a physical modelling of SAR images,
provided by the Attributed Scattering Centres Model. Thanks
to it, it is possible to describe both synthetic and measured



images and to use this physical knowledge to generate aug-
mented samples. Even though similar to the pipeline proposed
by SCALIAN DS in [12], our modelling and proposed DA
technique differs on two aspects: physical parameters can be
estimated from both synthetic and measured images, without
being adherent to MOCEM or CAD models, and can thus
provide an interpretable feature space shared between the two
domains, providing hints about their discrepancies.

A. Our approach

1) Attributed Scattering Centres (ASC) model: Proposed
by Gerry et al. [9] in 1997, the Attributed Scattering Centres
(ASC) model is based on the geometrical theory of diffraction
(GTD) and physical optics (PO) and enables one to accurately
model the scattering of a target. This model deals with both
localized (the scatterer appears to exist at a single point in
space) and distributed (the scatterer, in the imaging plane,
appears as a finite, non-zero-length current distribution) scat-
tering mechanisms, and characterises them with a set of several
parameters corresponding to:

• Frequency and aspect dependence,
• Physical attributes (such as the structure, location, orien-

tation, geometry, size).

Formally, the ASCM describes the total scattered field as a
function of frequency f and aspect angle ϕ as:

E(f, ϕ; ΘN ) =

N∑
i=1

Ei(f, ϕ; θi) (1)

Where ΘN = {θi|θi = [Ai, xi, yi, αi, γi, Li, ϕ̄i], 1 ≤ i ≤ N}
is the parameter set of N individual scatterers and

Ei(f, ϕ; θi) =Ai · (j
f

fc
)αi

· exp(−j
4πf

c
(xi cosϕ+ yi sinϕ))

· sinc(2πfcLi sin (ϕ− ϕ̄i))

· exp(−2πfγi sinϕ)

(2)

With each term Ei(f, ϕ; θi) representing the backscatter
from a single scattering mechanism, fc the centre frequency
of radar wave, c the velocity of light.

The parameter set of the ith scatterer has physical inter-
pretations related to the location and the geometry of the
scatterer. Specifically, Ai represents the relative amplitude
of the measured field (Ai ∈ C2), xi and yi correspond,
respectively, to range and cross-range locations (in meters),
αi ∈ {−1,−0.5, 0, 0.5, 1} models the frequency dependence,
γi describes the mild aspect dependence of localized scattering
centre cross section, Li models the length of the scattering
centre and ϕ̄i models the orientation angle with respect to the
broadside.

This model has the advantage of being able to represent
several types of scattering centres depending on the different
values the parameters take, as presented in Table I.

TABLE I
GEOMETRIC SCATTERING TYPES DIFFERENTIATED BY FREQUENCY AND

ASPECT DEPENDENCE.

Geometric Scattering Type α γ L ϕ

Localized

Trihedral 1

> 0 0 0Top Hat 0.5
Sphere 0

Corner Diffraction -1

Distributed

Dihedral 1

0 > 0 ̸= 0Cylinder 0.5
Edge Broadside 0
Edge diffraction -0.5

2) Extracting ASC parameters: Given a SAR image
D(x, y), the objective is to find the set of parameters ΘN =
[θ0, ..., θN ] that best fit the N scattering mechanisms present
in the object that is imaged.

To do so, we resort to the minimisation of a cost function
that represents the difference between the model and the actual
response in the image domain, as scattering centre responses
are isolated in the image domain when data is gathered at high
frequencies. Consequently, our problem can be expressed as:

Θ̂N = argmin
ΘN

∥∥∥D(x, y)− D̃(x, y; ΘN )
∥∥∥
2

(3)

where ΘN are the scattering parameters, D(x, y) the SAR
image and D(x, y)−D̃(x, y; ΘN ) the reconstructed image via
the ASC model.

First, as with every numerical optimisation process, we
initialise a set of values before starting the iterations. Next,
we use a gradient-based optimisation to numerically obtain
the set of parameter values that minimise the cost function.
Choosing the order of the problem, here N , that corresponds
to the number of scatterers, is really difficult. For simplicity,
we fix it to a upper bound, the value of which we will examine
in IV-B1b. It is worth noting that this number of scatterers will
change, depending on the considered target, azimuth angle and
database.

3) Reconstructing images from ASC parameters: Given the
set of ASC parameters, it is next possible to generate the SAR
signal in the frequency-aspect angle domain using the equation
1. In order to retrieve the Cartesian domain data, it is then
needed to resample to a uniform grid on coordinates (fx, fy)
expressed as fx = f cos(ϕ) and fy = f sin(ϕ).

This resampling gives us an M ×P array depending on fx
and fy in the frequency domain. In order to be comparable
with SAR images, we need to convert these data into the image
domain. To do so, the data are first multiplied by a Taylor
window (with a -35 dB side lobe level), and is next zero-
padded to a new size of Mz×Pz where Mz = 1.5M and Pz =
1.5N . Finally, we get the SAR image D(x, y) thanks to a two-
dimensional inverse Fourier (2D-IFFT). It is thus possible to
compare the images generated with the ASCM with measured
samples.

4) Using ASC for data augmentation:
a) Training pipeline: In the context of SAR ATR, our

approach uses the ASC model to obtain a representation in



the ASC domain of sample images. In this way, the data
augmentation process can be carried out in a domain ancillary
to SAR images, which is more physical and allows for better
control of the transformations performed.

The training pipeline relies on the process presented in Fig.
2:

1) Starting from a synthetic training dataset, the ASC
parameters are extracted on each image separately, ob-
taining an ASC training dataset.

2) Augmentations and transformations are then optionally
performed on the ASC parameters (red block).

3) In order to train the model of interest on SAR images,
the reconstruction step is necessary to convert the ASC
parameters back into SAR images.

We then obtain a synthetic reconstructed training dataset.
An example of reconstruction is shown in Fig. 3. In this new
dataset, only the targets are reconstructed (Step 3), resulting
in a zero background, which is not consistent with the real
test data set.

For a matter a time, we first overcome this issue and
compensate for reconstruction defects by averaging each re-
constructed sample with its original version (Step 4). We
emphasise the fact that it is only a temporary measure until
we have implemented a better ASC parameter estimation
algorithm and found a process to add background information
in reconstructed images. Finally, as is traditionally the case in
deep learning processes, the image is standardised: the model
is trained with the Quarter Power Magnitude (QPM) LUT on
the images, that are then normalised and cropped to a 64×64
format. These images are then used to train our model, which
is a ResNet18. For information, we trained it for 500 epochs,
with early stopping (that happened at epoch 257), with batches
of 32 samples. We used an Adam optimiser with a learning
rate of 0.001.

b) Transformation types: As mentioned earlier, our data
augmentation method do not apply directly to the training
samples, in this case SAR images, but to the ASC parameters.
All augmentation types are then performed on ASC parameters
data type, before the reconstruction, i.e. between stages 2 and
3 in Fig. 3. Three families of transformation are used:

• Adding Gaussian noise to the parameters, on the reflec-
tors position or amplitude for example.

• Adding new reflectors:
– defined (type of effects and amplitude) randomly or

similar to the target.
– placed randomly or on the target area.

• Removing random reflectors.

Fig. 4 illustrates the different types of transformation in the
resulting SAR reconstruction (Step 3) in Fig. 3). The SAR
reconstruction from ASC parameters is also performed on the
original sample without any transformation for comparison
purposes.

In this paper, we then refer to data augmentation techniques
applied directly to SAR images as image augmentations and

those applied in the domain of ASC parameters as ASC
augmentations.

B. Study of the ASC modelling

Our first experiments aim at evaluating the quality of our
ASC parameter extraction algorithm and to analyse the sets of
parameters extracted from our datasets.

1) Quality evaluation of the ASC parameters extraction al-
gorithm: The purpose of this study is to analyse the impact of
ASC extraction hyper-parameters on the reconstructions, and
thus select the most effective set of values for the experiments.
The extraction of ASC parameters is considered effective if the
reconstruction of the SAR image is close to the original image.
The impact of both the number of iterations and the number
of scattering centres will be evaluated.

2) Analysis of estimated ASC parameters: Analysing the
ASC parameters not only allows trends in the data to be
identified, but also any gaps in the data to be determined.
To do this, several aspects are studied:

• The number of parameters overall and per effect accord-
ing to the type of target, but also the angular sectors,

• The comparison of the parameters obtained from real and
synthetic data,

• The effectiveness of extraction on both types of data.
3) Metrics: To perform the experiments presented in the

previous section, we will use the following metrics.
a) Image comparison: For comparing an original image

IO and its reconstruction IR, we use the Image Correlation
Coefficient metric (ICC):

ICC(IO, IR) =
∑

m

∑
n

[
IO(m,n)−ĪO

][
IR(m,n)−ĪR

]
√∑

m

∑
n

[
IO(m,n)−ĪO

]2 ∑
m

∑
n

[
IR(m,n)−ĪR

]2 (4)

We also computed other metrics but, due to space consid-
erations, we only report ICC values that appear to be fairly
aligned with the human eye.

b) ASC parameters analysis: Heatmaps. Heatmaps are
used to show data depending on two independent variables
as a colour coded image plot. In this case, they represent a
number of elements associated with a colour bar.
Violin plots. Violin plots are used to compare data distribu-
tions in a similar way to box plots, but with the addition of
probability density information.

C. ASC data augmentation study for SAR ATR

The focus of the following experiments is on the benefits
of our DA technique regarding recognition performance. In
order to quantify the contribution of the proposed method
for SAR ATR, several test configurations are carried out. We
gradually add different ASC augmentation techniques, starting
from baselines. All tested configurations are listed in Table II.
Each of the three baselines has its own objective:

• The Baseline allows to define a starting point for perfor-
mance on original SAR images, without resorting to any
data augmentation.



Fig. 2. Our data augmentation pipeline (ASC augmentation).

Fig. 3. Example of an ASC extraction and reconstruction on a 2S1 real target.
Images are displayed with the same colour range with the QPM LUT.

Fig. 4. The different transformations effects on the reconstructed SAR image
on a real 2S1 example.
Images are displayed with the same colour range with the QPM LUT.

• The Augmented Baseline allows to quantify the final gain
obtained by adding traditional image data augmentation
techniques.

• The Baseline ASC represents a point of comparison for
each ASC-augmented test training via SAR reconstructed
images, without resorting to any data augmentation.

In order to confront our work to the state of the art, some
test configurations use traditional SAR image augmentation
techniques, inspired from and detailed in [1]: Gaussian noise
addition, colour jittering and random area erasing. We also
add random high pixels dropout and value shifting. What’s
more, all configurations use circular shifts (x and y offsets)

on the synthetic training images (original and reconstructed)
for the significant performance gain it provides, as mentioned
in [2]. The study is evaluated thanks to traditional classification
metrics Accuracy and F1-score.

IV. EXPERIMENTAL RESULTS

A. Data under study

1) Synthetic MOCEM MSTAR: The training set is based on
a synthetic database generated using the MOCEM software,
which is a CAD-based SAR imaging simulator developed by
SCALIAN DS for the French MoD (DGA) [11]. Synthetic
samples were directly provided by the French MoD who
reproduced the MSTAR dataset. They used one CAD model
per MSTAR class and the radar parameters provided by the
MSTAR metadata. They ran parametric simulations for the
depression angle of 15° and generated images at every 1°
azimuth for the full [0°, 360°[ range. Thus, they did not
consider exactly the same azimuth angles than MSTAR. These
3600 images were randomly split into train/validation sets
using a 75%/25% repartition for the first two baselines. For the
Baseline ASC and TSM1 to TSM10, the corresponding ASC-
based reconstructions are added to these splits, leading to a
total of 7200 images. Special attention is paid to ensuring that
both the original image and its reconstruction are included
in either the training set or the validation set. Addition is
considered instead of replacement to still take benefit from
the initial physical information provided by MOCEM.

2) MSTAR: The test set is the measured MSTAR dataset,
collected by the Sandia National Laboratory SAR sensor plat-
form and sponsored by Defence Advanced Research Projects
Agency and Air Force Research Laboratory [10]. The MSTAR
dataset allows the benchmark for experiments related to prob-
lems dealing with SAR images. Each MSTAR file has the same
structure: it includes experimental conditions (such as azimuth
angles, depression angles, and target classes, among others),
and the amplitude and phase information. The target images
were captured by X-band SAR sensor and have a resolution
of 0.3×0.3m. The test dataset consists of the central-cropped
64 × 64-sized 2425 SAR target images under a depression
angle of 15°. This dataset contains 10 target classes that are
composed of one bulldozer (D7), one truck (ZIL131), one air
defence unit (ZSU234), one rocket launcher (2S1), two tanks



TABLE II
TESTING SYNTHETIC-TO-MEASURED CONFIGURATIONS

Test name Training dataset
(number of images)

Augmentations
ID Images ASC

Baseline S2 (3600) - - -
Augmented Baseline S (3600) A0 Traditional SAR images augmentations1 -

Baseline ASC S + R3 (7200) - - -
TSM1 S + R (7200) A1 - Gaussian noise on reflectors amplitude.
TSM2 S + R (7200) A2 - Gaussian noise on reflectors position (x and y)
TSM3 S + R (7200) A3 - A1 + A2
TSM4 S + R (7200) A4 - Adding reflectors (randomly defined and similar to the target)
TSM5 S + R (7200) A5 - Random removing of reflectors.
TSM6 S + R (7200) A6 - A3 + A4
TSM7 S + R (7200) A7 - A3 + A5
TSM8 S + R (7200) A8 - A4 + A5
TSM9 S + R (7200) A9 - A6 + A5

TSM10 S + R (7200) A10 A0 A9
1The data augmentation methods used are detailed in III-C.
2S = Original synthetic dataset.
3R = Reconstructed synthetic dataset.

(T62, T72), and four armoured personnel carriers (BMP2,
BTR60, BTR70, BRDM2).

B. Study of the ASC modelling

1) Quality evaluation of ASC extraction algorithm:
a) Impact of the number of iterations: Analysing the

effectiveness of ASC parameters extraction according to dif-
ferent iteration values allows us to choose the optimal value for
generating training data. Fig. 5 presents the ICC metrics result-
ing from all 2S1 synthetic SAR images compared with their
pairwise reconstruction. The left plot shows sorted ICC values
obtained from all pairs for different number of iterations. The
right heatmap presents the same results according to azimuthal
sectors. Both graphs allow us to conclude that reconstruction
improves as the number of iterations increases. However, after
100 iterations, the gain on the ICC metric weakens, which is
why a value of 200 seems to strike a balance between quality
and generation speed.

It is also very interesting to note that ICC performs much
better for certain angular ranges, particularly around 90° and
270°, which correspond to cases where the target is facing
forwards or backwards, regardless of the number of iterations.

b) Impact of the number of scattering centres: To con-
clude on the effect of the number of scattering centres con-
sidered in the algorithm, we propose to calculate the ICC
between the reconstructed image and the original image of
the synthetic data for all targets. Histograms for 5, 25, 50 and
100 considered reflectors are displayed Fig. 6. Five points are
clearly insufficient to reconstruct a high-quality image and a
real improvement is observed from 50 points onwards. Using
100 reflectors reduces the risk of obtaining data with a low
ICC, but considering the increasing calculation time with the
number of reflectors, a value of 50 reflectors will be retained
for the rest of the experiments.

2) Analysis of estimated ASC parameters:
a) Stability of extraction according to classes and angu-

lar sectors: To observe trends in ASC parameters in terms of
number of points between different targets, but also according

Fig. 5. ICC analysis between the original SAR image and the image
reconstructed from the ASC parameters extracted according to 5, 50, 100,
200 and 500 iterations. The extraction is performed with 50 reflectors. On the
left are the ICC curves sorted for all images, and on the right is the heatmap
by angular sector for the different iteration values.

Fig. 6. ICC distribution between reconstructed and synthetic original images
for 5, 25, 50 and 100 scattering scatters. The extraction is performed with 50
reflectors and 200 iterations.



to the angular sector considered, the Fig. 7. presents heat
maps for synthetic and real datasets. All data is obtained by
extracting 50 reflectors, but some are null. Here, we consider
the number of points to be the number of non-null points
among the 50.

Fig. 7. Average number of reflectors per angular sector for each target for
synthetic and real datasets.

Two main findings emerge from this study. Firstly, the study
reveals a similar trend between synthetic and real datasets
according to angular sectors around azimuths 90° and 270°
which have fewer reflectors. This corresponds to cases where
the target is facing forwards and backwards. This is not a
problem, as it has been observed Fig. 5 that reconstruction is
better at these angles.

Secondly, some synthetic targets show a significant gap with
measured data, which manifests itself in a lack of reflectors. In
particular, the D7 target has fewer reflectors in the synthetic
case, which is consistent with its smaller size compared to
other targets, but this trend, is in fact, absent in the real case.
This is also the case for T62 target, even though it is similar
to the T72. Also, the ZIL131 seems to be pathological for
azimuths between 120° and 150° as there are practically no
extracted reflectors.

The study can be refined by looking at the number of
reflectors per radar effect in the same cases. Fig. 8 presenting
the average number of effects for each angular sector for all
targets combined shows that trihedral and corner-diffraction
effects are predominant, while cylinder effects are rarely
detected.

Fig. 9 focuses on the ZIL131 pathological case via a syn-
thetic versus measured violin plot confronted to the 2S1 case.
The 2S1 distributions are more symmetrical between synthetic
and real cases, as shown by the EMD coefficient, which shows
greater similarity than the ZIL131, which highlights significant
asymmetry.

For further analysis, Fig. 10 reveals that pathological cases
generally happen when a pixel or a small group of pixels is
significantly brighter than other pixels of the target, which end
up being ignored in the ASC extraction.

b) Extraction efficiency between real and synthetic data:
In order to study the differences in extraction between syn-
thetic and real data, we display Fig. 11 showing the ICC

Fig. 8. Average number of reflectors for each radar effect.

Fig. 9. Violin plot for the 2S1 and ZIL131 effects: synthetic vs real.
For visualisation purposes, we only display three effects. The Earth Mover
Distance (EMD) coefficient is also displayed for each effect. This calculates
the difference between the real and synthetic distribution pairs. It can also be
seen as the amount of change required for the synthetic distribution to equal
the real one.

Fig. 10. Example of a pathologic case of the ZIL131 target, azimuth 125°.
SAR Image is dispalyed on the left, while ASC parameters are shown on the
right.

distribution via histograms for four different targets. Overall,
better reconstructions are possible based on real data. This
fact is somewhat reassuring, as it shows that ASC extraction
reflects physical reality.

C. ASC data augmentation study for SAR ATR

Training configurations are completed as described in Table
II. For all cases, the trained ATR is then tested on the same
MSTAR real set and the results are provided in Table III with
accuracy and F1-score.

Training the ATR model on reconstructed ASC dataset set
results (Baseline ASC) in an accuracy of 55.88%, while adding
ASC augmentations process (TSM9) ends up with 60.86%.
Adding ASC augmentation process confers an improvement
almost identical to adding image augmentation, which gives



TABLE III
EXPERIMENTAL RESULTS

Test name Baseline Augmented
Baseline Baseline ASC TSM1 TSM2 TSM3 TSM4 TSM5 TSM6 TSM7 TSM8 TSM9 TSM10

Test Accuracy 53.25 59.58 55.88 54.63 58.8 51.67 62.21 54.3 60.81 56.62 52.78 60.86 70.97
F1-Score 51.24 58.5 55.39 53.45 57.79 49.93 60.24 53.07 59.79 54.88 51.49 59.83 70.16

Fig. 11. ICC distribution: synthetic vs real (50 reflectors, 200 iterations).

a 59.58% accuracy. However, combining the two methods
(TSM10) gives an accuracy of 70.97%.

According to the TSM4 test, adding new reflectors near the
target seems to have a positive effect on performance. TSM6
and TSM9 tests confirm this trend, as they are also based
on reflectors addition augmentations. This result could be
explained by the fact that synthetic and measured samples may
exhibit different target signatures, with scatterers amplitude
and position slightly shifted.

We present our method as a complement to existing data
augmentation techniques and compare it to those described in
the literature. For example, Baffour et al. [1] use traditional
augmentation and report 92% accuracy on MSTAR, but their
results rely on the flawed SAMPLE dataset [2]. The approach
by Camus et al. [2] is most comparable to ours: with their
augmentation pipeline and MOCEM dataset, they reach 75%
accuracy. The observed differences stem from the use of
broader augmentation (affecting both target and clutter, versus
only the target in our ASC-based DA), and more techniques
employed (bagging, adversarial training, Test-Time Domain
Augmentation). In order to quantify the isolated contribution
of the data augmentation method, we can compare our TSM9,
which achieves 60.86% accuracy, with their test incorporating
the ResNet architecture and domain randomisation (both tests
also involve random shifting), which achieves 50.48% accu-
racy. This result highlights the promise and robustness of our
approach, which is independent of MOCEM and induces more
localized changes.

V. CONCLUSION AND PERSPECTIVES

In this paper, we propose a data augmentation technique
based on physical knowledge about SAR images to bridge

the gap between synthetic and measured data. First, we
presented the Attributed Scattering Centres Model, which is
a physical model aiming at accurately describing the target
information in SAR images. Next, we described our data
augmentation method using this physical knowledge. In fact,
having a set of ASC parameters, it is next possible to generate
new samples by slightly perturbing them. These augmented
samples can then be used to train models. Given the MSTAR
and the corresponding synthetic datasets, we analyse different
augmentation configurations and their impact on recognition
performance. We showed that our proposed data augmentation
pipeline can help gain up to 15.09% in terms of accuracy (see
TSM10 vs Baseline ASC in Table III). Moreover, we identified
that adding scattering mechanisms near the target is the most
prolific augmentation, being able to give physical clues about
the SAR S2M domain gap.

As a consequence, we believe that this approach shows
potential for the future. Forthcoming work could involve the
several following aspects.

Our ASC parameter estimation algorithm is not yet fully op-
erational as it can be seen in Fig. 6. Some samples are not cor-
rectly reconstructed, leading to incomplete target information
for some classes and azimuth angles, and thus deteriorating the
representativeness of the dataset. As a consequence, we believe
that our data augmentation pipeline and its corresponding re-
sults are not at the maximum of their potential. These moderate
results can be explained by different reasons, for example by
our way of initialising parameters. On the other hand, we
need to further investigate and characterise the S2M domain
gap. In fact, this paper shows some preliminary results that
enabled us to test our data augmentation process. However,
as explained earlier, we truly believe that we can also unveil
which data augmentation method is most useful in the current
task and why with our DA process. For example, we would
like to be able to provide explanations such as: "we identified
that for these measured and synthetic datasets, the rear of the
2S1 target is different because it shows dihedral instead of
trihedral effects. As a consequence, we can guarantee domain
generalisation by using the corresponding data augmentation
during training." In other words, we would like to both
characterise physically why synthetic and measured samples
are different, and bridge the domain by using the most useful
and justified data augmentation technique.
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