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Abstract—Maritime surveillance plays a critical role in ensur-
ing the security and safety of coastal regions, demanding reliable
identification and tracking of vessels across spatially distributed
camera networks. This task is particularly challenging as the
system must identify a vessel even if it appears in different
lighting conditions, angles, or environments. In this work, we pro-
pose a real-time visual vessel re-identification system optimized
for deployment on edge devices. We evaluate our method on a
custom maritime dataset and benchmark its performances on
the NVIDIA Jetson Orin NX platform, AMD-Xilinx Kria KV260
Vision AI Kit, and a Raspberry Pi 5 with Hailo-8 accelerator.
This work highlights the feasibility of deploying advanced Re-
ID systems at the edge, enabling scalable, real-time maritime
monitoring solutions. The proposed deployments demonstrate
promising results with an inference speed of 20 FPS and a limited
degradation of 3% in mean average precision in the worst case
due to 8-bit quantization.

Index Terms—Deep-learning, Edge computing, Marine vehicles
identification

I. INTRODUCTION

According to the United Nations Conference on Trade
and Development (UNCTAD), the maritime transport sector
accounts for over 80 percent of world trade volume. It is es-
sential to guarantee the safety and security of maritime traffic
from coastguard stations, Maritime Affairs ships patrols, and
aircraft. The purpose is to maintain control over all activities
related to the maritime environment, including commercial
traffic management, sea fishing, and the monitoring of marine
pollution, among others. Maritime surveillance is the process
of monitoring, detecting, identifying, and tracking vessels and
objects in or near a marine environment. It can be conducted
using a variety of technologies and methods, including satellite
imagery, automatic identification system (AIS), radars and
cameras.

Currently, human analysis, assisted by simple intelligent
methods, remains the most common approach for processing
large-scale maritime surveillance videos. With the decreasing
cost of cameras and sensors, the volume of usable data has
surged, making analysis increasingly tedious for operators.
This time-consuming process is also prone to errors, including
missed detections due to operator fatigue. To address these
challenges, research on automated identification systems has
become a dynamic area of computer vision.

However, maritime environments present unique challenges,
including variable weather conditions, the dynamic nature of
the ocean, and the vastness of the surveillance area. These
factors can decrease the quality of visual data and complicate
object detection. Sensor fusion combining visual data such
as camera, radar, LiDAR, infrared, or even satellite feeds,

allows for better detection, even in low-visibility conditions
(fog, night-time, or adverse weather), improving the robustness
of maritime surveillance systems.

Additionally, deploying drones with embedded computer
vision systems closer to the target area can help overcome
challenges posed by the maritime environment, improve iden-
tification accuracy, and reduce the cost of maritime surveil-
lance missions. Furthermore, an image-based classification and
identification system is complementary to radar and AIS data.
It helps to remove doubts about radar detections, which are
limited in terms of target classification and identification due to
the lack of return information (radar-equivalent surface), and
to fill the gaps left by the AIS, such as jamming, shutdown or
identity theft.

Re-identifying (Re-ID) vessels is a particularly important
task in scenarios such as surveillance or tracking ships over
time, across different images or video frames. However, these
computer vision algorithms may be too resource-intensive
to be embedded on edge devices, such as those on drones.
Our research introduces a real-time system for re-identifying
marine vessels across different images. This approach that
combines a deep learning technique is based on triplet loss
network, with embedding analysis, and a k-nearest neighbors
algorithm (K-NN). It considers the appearance, category, and
orientation of vessels, to determine whether different images
represent the same object. The proposed system is designed for
deployment on edge computing devices embedded in maritime
and aerial vehicles, using initially an RGB camera.

The rest of the paper is organized as follows. Section II
presents related work on marine vessel Re-ID, while Section
IIT introduces a new large-scale marine vessel dataset. Section
IV provides training analysis, and Section V presents inference
results on edge devices. Finally, we discuss our results and
future work in Section VI, followed by the conclusion in
Section VIIL.

II. RELATED WORKS

This section introduces the concept of Re-Identification (Re-
ID) by briefly reviewing research on person and vehicle Re-ID,
followed by an exploration of recent advancements in marine
vessel detection and orientation recognition.

A. Person and Vehicle Re-Identification

Re-ID focuses on retrieving an entity of interest across
multiple non-overlapping camera views. This is a challenging
computer vision task, as its goal is not only to differentiate



(b) Inter-class similarities

Fig. 1. Complexity of vessel Re-ID [1].

between object categories, as in classification tasks, but also to
recognize the same individual objects across different images.
The main challenge is to accurately associate the same entity
captured under different conditions, including variations in
lighting, pose, viewpoint, background, and occlusions. Re-ID
is widely used in surveillance through Person Re-ID and in
traffic monitoring and automated tolling through vehicle Re-
ID.

The main method, in most of the literature of Re-ID, is to
locate instances of a query object (probe) from a group of
candidates (gallery) captured from different non-overlapping
camera views. Features are extracted from each image of a
person, and mathematical techniques are used to measure the
distance between image pairs.

Building a Re-ID system requires five main steps: raw data
collection, bounding box generation, data annotation, model
training, and object retrieval.

B. Vessel Re-Identification

Compared with the re-identification of people and vehicles,
vessel re-identification offers additional complexities due to
several domain-specific factors, such as:

o Small inter-class similarity: Vessels from different classes
may appear visually similar, especially when they belong
to the same ship models or companies.

o Large intra-class similarity: The same vessel can look
drastically different depending on the viewpoint, making
consistent identification difficult.

o Environmental influences: Factors such as occlusion, il-
lumination changes, and other environmental noise (fog,
rain) further impact the vessel’s appearance.

Figure 1, extracted from [1], shows a) the intra-class differ-
ences caused by viewpoint changes for the same ship, while
b) highlights the inter-class similarity for different vessels of
the same type.

Figure 2, shows some sample images of our dataset for dif-
ferent challenging scenarios: different illuminations, variation
in scale, change in background, and different viewpoints.

Most of the works consider only similarities and dissimilar-
ities to the vessel identification task, and use the TriNet model
[2], or [3]. The loss function optimized to learn such features
is the triplet loss. During the learning, it uses three images the
anchor (current ship), the positive (another image of the cur-
rent ship), and the negative (image of another ship). The TriNet

Fig. 2. Samples of our VesselReid-12k dataset. Each row of the figure shows
six images of a ship in different scenarios: different Illuminations, variation
in scale, change in background, and different viewpoints.

model is trained to minimize the distance between the anchor
and the positive sample and to maximize the distance between
the anchor and the negative sample. These three images are
passed through a Convolution Neural Network (CNN) layer,
generating a 1-dimensional feature vectors (embedding) which
is used to calculate the distances between them. The CNN
is often a customized ResNet-50 architecture that is suitable
for embedded applications because of its low computational
complexity. At the inference stage, only a single subnetwork
is used to generate the embeddings of new input samples
and a K-Nearest Neighbors (KNN) algorithm is performed
to find the best matches. This approach efficiently identifies
vessels based on learned visual features and ensures accurate
matching through optimized distance calculations. IORNet
[3] proposes an identity-oriented re-identification model that
combines triplet loss and cross-entropy loss, using ResNet-
50 as the core feature extraction network. [4] study the ship
retrieval methods for intelligent water transportation system
in smart cities and employed a pyramid structure to deal
with variations in ship shapes and sizes. In [5], the authors
proposed a quadruplet learning and improve the recognition
accuracy taking four images : anchor, positive, negative high-
similar (same class vessel) and negative. In [6] the authors
proposed a new Vessel Re-ID network (VesselNet), employing
ResNet-50 to extract image features and incorporating a hybrid
attention module to effectively capture significant features in
the images. In [7] a fine-grained feature extraction network
(FGFN) is proposed. The authors improve the ResNeSt [8]
architecture through incorporating a self-attention mechanism
and generalized mean pooling. In [9] the authors propose a
two-branch network with dynamic feature enhancement and
dual attention to address the issue of low accuracy in ship
Re-ID under foggy weather, enabling simultaneous learning
of defogging and ship Re-ID tasks in an end-to-end manner.

Specific parts of ships, such as the bow, stern, and equip-
ment on the deck, often possess high uniqueness and dis-
criminability [10]. Capturing these local features allow for
more accurate identifications and differentiations of ships,
[11] adopts a dual-branch architecture for global and local



feature learning, allowing each branch to focus independently
on global or local characteristics.

The GLF-MVFL framework [2] proposes a feature learning
method based on global and local fusion, combining cross-
entropy loss with orientation-guided quintuplet loss. As large
vessels are more sensitive to a change in viewpoint they add
two extra image samples (one positive and one negative) to the
triplet to constitute the quintuplet : anchor image, a positive
image from the same viewpoint, a positive image from a
different viewpoint, a negative image from the same viewpoint,
and a negative image from a different viewpoint. Compare to
IORNet [3], they increased the mean average precision (mAP)
and Rank-1 by 7% and 3% with the same backbone ResNet-50
and achieved 74.9% for mAP and 61.4% for Rank-1.

In this article, we propose a large vessel Re-ID dataset called
VesselReID-12k and use ResNeSt as the feature extraction
network [8]. We also employ generalized mean pooling, hard
triplet mining, and re-ranking optimization to achieve state-of-
the-art ship re-identification results.

We will describe the large-scale dataset we constructed in
the next section.

III. THE LARGE-SCALE MARINE VESSEL DATASET

Since the well-known vessel re-identification datasets Ves-
selReid [12] and VesselReid-539 [2] are not publicly available,
we created a large-scale, well-annotated dataset with rich
attribute labels, including vessel identities, vessel category
(36 classes based on AIS ship types), as well as the main
orientations: front, back, one side, oblique front-side, and
oblique back-side. The process for collecting, cleaning and
annotating data is described in [13].

At the end of this process, our dataset consists of 263,488
images of 12,777 unique vessel IDs, each annotated with a
7-bin orientation and a 36-class vessel-type label.

Figure 2 shows a few representative samples from the
dataset VesselReid-12k.

A. Statistical distribution of the dataset

Figure 3 statistically analyzes the VesselReid-12k dataset in
terms of vessel types and orientations. This paper classifies
vessel types into the thirty-six classes.

It can be noticed that there is an issue of class and orienta-
tion imbalance. In future work, we will integrate new images
sourced from VesselFinder or Marine Traffic to better balance
our dataset. VesselFinder and Marine Traffic are international,
free-to-use websites for real-time ship tracking where each
boat contains a variable number of images captured from
different viewpoints and distances across different times and
locations.

In addition, to analyze scale variations within our dataset,
as shown in Figure 4 we calculate the mean and standard
deviation of the width, the height and the aspect ratio of ship
images. The vessel image size and aspect ratio vary greatly.
The standard deviation of the aspect ratio (width-to-height
ratio) of our dataset is 1.113, which is higher than that found
in other Re-ID datasets for ships [11]. Therefore, the greater
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Fig. 3. VesselReid-12k representation in terms of vessel types and vessel
orientations.

the diversity of our dataset, the less sensitive the trained model
must be to scale change.

B. Comparison with other vessel datasets

Table I presents a comparison between our dataset and
other existing vessel datasets. [2] proposed a ship retrieval
dataset named VessellD-539, created by selecting images
from the Marine Traffic website. The training set contains
104,554 images of 377 identities, while the testing set con-
sists of 44,809 images of 162 identities. [12] introduced
a new maritime vessel re-identification dataset named VR-
VCA, which includes 729 unique identities along with 5-bin
orientation and 8-class vessel-type annotations. [4] constructed
a fine-grained ship retrieval dataset (FGSR), consisting of
30,000 field-captured images of 1,000 ships. The VessellD-
700 dataset comprises 56,069 images covering seven typical
ship classes. Additionally, the Warships-RelD dataset [14]
includes 4,780 images of 163 vessels. The ShipReID-2400
dataset is compiled from a real-world intelligent waterway
traffic monitoring system. It comprises 17,241 images of 2,400
distinct ship identities collected over 53 months, ensuring
diversity and representativeness. Finally, CMShipRied is cross-
modality ship re-identification dataset which contains visible
light, near-infrared, and thermal infrared modalities collected
by autonomous aerial vehicle. It consists of ten categories,
about 138 identifications, and 8337 images. Compared to other
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Fig. 4. Scale variation within the VesselReid-12k dataset.

vessel re-identification datasets, our dataset VesselRied-12k
contains more ships, more images, and a greater diversity of
viewpoints and aspect ratios.

We split our dataset into 3 parts: the training subset includes
7497 IDs and 197616 images, the query (validation) subset
contains 5984 IDs with 13175 images, and the gallery (test)
subset contains 7481 IDs with 52697 images. In the next
section, we will detail the training and associated statistics.

IV. TRAINING ANALYSIS

To distinguish objects based on their physical characteristics
at the pixel level, an appearance descriptor called an embed-
ding is generated using a Siamese triplet network. During
training, the network uses three images: the anchor (previous
detection), the positive (current and future detections of the
same object), and the negative (other objects). It is trained
to minimize the distance between the anchor and the positive
sample, while maximizing the distance between the anchor and
the negative sample. These three images are passed through
a CNN layer (the backbone), generating a one-dimensional
embedding, used to compute the distances. During inference,

only one network is used to produce an embedding layer for
the candidate track (anchor). Then results are compared to
current detection to find the best match based on minimum
distance.

To guide feature learning during training, the most com-
monly used loss functions are identity (cross entropy) loss
and triplet loss. Identity loss treats the training process of the
identification model as an image classification problem, where
each identity ID is considerate as a different class. Triplet
loss, on the other hand, considers the training process of the
identification model as a retrieval ranking problem, where
the distance between positive sample pairs should be smaller
than between negative sample one. The choice of positive
and negative sample is crucial for improving the retrieval
performance of re-identification. This process of selecting
effective triplets is often referred to hard mining, while re-
ranking is typically applied during the inference stage to refine
retrieval results based on the initial ranking.

The basic idea of re-ranking is to utilize gallery-to-gallery
similarities to refine the initial ranking list. When fine-tuning
with the ranking loss, it is crucial to mine hard triplets
efficiently, as randomly selected triplets often result in easy
samples or triplets with little, or no loss, contribution.

A. Training process

The training processes are conducted using FastReid frame-
work on Nvidia Quadro RTX 3090. The framework FastReID
[17] implements state-of-the-art re-identification algorithms. In
the image pre-processing stage, resizing and data augmentation
techniques such as flipping, cutout, and random erasing are
done. The input images are downsampled to resolution of
256 x 256.

For the backbone that maps images to features represen-
tations, four architectures were used and compared: Resnet-
50, Resnet50+IBN (with instance batch normalization), Vision
Transformer (ViT) and ResNeSt. Transfer learning is adopted
by initializing the models with the weight values of models
previously trained on popular large-scale ImageNet dataset.
The model is trained over 300 epochs.

During training, we use a combination of cross-entropy loss
and triplet loss as the loss function. Following the approach
in [18], we also apply hard triplet mining to enhance the
discriminative power of the triplet loss and mitigate the impact
of class imbalance. The aggregation layer is designed to
combine the feature maps generated by the backbone into
a global feature representation. At this stage, we employ
average pooling. For distance metrics, we use the cosine
distance, which has yielded better experimental results than
the Euclidean distance on normalized embeddings.

B. Evaluation of trained models

The table II shows comparative performance evaluation of 4
backbone configurations. The key performance indicators are
the ranked accuracy of re-identification and the mean average
precision (mAP). Ranked accuracy is a method of computing
accuracy where the top-K highest-confidence predictions are



TABLE I
COMPARISON OF PROPERTIES OF VESSEL RE-ID DATASETS

Dataset ID Volume | Dataset Scale Angle of View Vessel Type
VR-VCA [12] 729 4614 5-bin orientation 8 classes
VessellD-700 [7] 700 56069 5-bin orientation 7 classes
VesselRelD [15] 1248 30587 5-bin orientation 7 classes
FGSR [4] 1000 30000 2 cameras view points none
VeRiS [6] 2,904 150,623 5-bin orientation 7 classes
VessellD-539 [2] 539 149465 superstructure 8 classes
Warships-RelD [2] 169 4780 none 8 classes
VesselRelID-1656 [1] 1656 135866 5-bin orientation 12 classes
ShipReID-2400 [11] 2400 17241 8 cameras view points none
CMShipRelD [16] 138 8337 3 image source (VIS,NIR, TIR) 10 classes
Ours (VesselReID-12k) 12777 263488 7-bin orientation 36 classes
TABLE 11

TRAINING RESULTS

Model Feature dimension (Bits) | mAP (%) | Rank-1 accuracy (%) | Rank-5 accuracy (%) | Rank-10 accuracy (%)
Resnet-50 2048 67.05 72.32 89.78 94.89
Resnet-50+ibn 2048 69.66 74.51 90.86 95.60
Vit 768 69.07 73.21 90.89 95.96
ResNeSt 2048 85.19 88.58 96.10 97.90
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Fig. 5. Training results of ResNeSt configuration: Total (Triplet+Class) loss
and rank-1.

compared to the ground truth label. In our case, we compute
rank-1 (Figure 5), rank-5 and rank-10 accuracies. This means
that for rank-10, if the ground truth label appears among the
top-10 predicted labels for a given sample, it is considered as
a correct match. The mAP measures the overall prediction
accuracy, reflecting how well the model retrieves correct
identities. In our case, it evaluates how accurately the model
predicts the identity (ID) of a vessel.

The ResNeSt configuration outperforms all other configu-
rations by up to 15% in mean average precision (mAP). It
achieves outstanding performance, with a Rank-1 accuracy
of 88.58% and an mAP of 85.19%, reaching state-of-the-art
levels for vessel Re-ID. In comparison, MVR-net [12] yields
a 74.5% mAP and a 77.9% Rank-1 score, while the GLF-
MVFL framework [2] achieves 74.9% mAP and 61.4% Rank-
1 accuracy.

Training the same ResNeSt configuration on the Mar-
ket1501 dataset for person Re-ID achieves a Rank-1 accuracy
of 95.2% and an mAP of 88.7%. While this performance is
slightly better, the complex observation conditions in vessel
Re-ID—such as long-range views, foggy skies, and sea re-
flections—along with the significant variation in vessel sizes

Fig. 6. Illustrations of the top-10 ranking list for retrieval results

and shapes across different viewpoints, reduce re-identification
performance compared to pedestrians or vehicles. Addition-
ally, vessels exhibit varying degrees of tilt and different draft
depths due to differing loads, further complicating consistent
feature extraction.

We provide representative visualization results to intuitively
demonstrate the accuracy of our vessel re-identification model
in Figure 6. The left panel shows the query input, while
the right panel displays the top-10 retrieved results sorted by
similarity. Green boxes indicate correct ID matches, whereas
red boxes represent inconsistent re-identification results. In
the case of an easy sample (a tanker), the model not only
retrieves the correct ID from the gallery set but also ranks it
highly in the results. For a hard sample (a tugboat), our model
successfully retrieves the correct ID three times, including a
correct match at the top-1 rank.



V. INFERENCE ON EDGE DEVICE

Deep learning-based object detection on embedded systems
must be optimized for low latency, high detection accuracy,
and low power consumption. In general, the deployment
process comprises two stages. In the first stage, the weights
and/or activations are quantized to the desired bit-width and
representation (e.g., FP16 or INTS8). Quantization refers to
the process of converting the weights and activations of a
trained deep learning model from high-precision floating-point
numbers (e.g., 32-bit) to lower-precision fixed-point or integer
representations (e.g., 8-bit). This is typically done using a
heuristic method that leverages a selected subset of images
from the training dataset, commonly referred to the golden
reference pool. This reduction in precision reduces the memory
and computation requirements, making it possible to efficiently
deploy neural networks on hardware with limited resources.

In the second stage, the quantized model is compiled to
generate the instruction sequence. During this stage, the model
is further optimized based on the target device’s architecture.
This study considers three different platforms: one GPU-
based, one ASIC-based and one FPGA-based. Their hardware
specifications are provided in Table III, which presents the
technical details of the embedded edge devices targeted in
this work.

A. Deployment targeting Nvidia Jetson Orin Nx

The trained model is deployed using TensorRT to achieve
lower latency and higher throughput during inference on
NVIDIA platforms. TensorRT is a software development
kit (SDK) provided by NVIDIA for high-performance deep
learning inference. It is compatible with most deep learning
frameworks and is used to achieve high performance and
platform portability. It comprises an inference optimizer that
implements several techniques, such as kernel fusion, precision
calibration, kernel auto-tuning, dynamic tensor memory man-
agement, and multi-stream execution, to optimize the inference
of the trained model.

Since the FastRelD framework is not supported by Ten-
sorRT, the target model is first converted using the Open
Neural Network Exchange (ONNX) format. Next, the model
is quantized to FP16 representation. Table IV presents the
results in terms of detection performance and inference speed.
It compares the original trained model with the TensorRT-

TABLE III
SPECIFICATIONS OF TARGET EDGE EMBEDDED DEVICES
Target Nvidia Jetson PI5 + Kria KV260
Device Orin NX 8Go (M2 Hailo 8 Vision Al Kit
Edge 1024-core Hailo |Ix DPU configurations
accelerator |32 Tensor Cores 8L B4096 at 300 MHz
Al Performance
(estimated FP16) 54 TFLOPS Unkown Unkown
Al Performance
(estimated INTS) 70 TOPS 13 TOPS 1.43 TOPS
Max Power 30 W 1243 W 8 W
consumption
Price 600% 300$ 300$

TABLE IV
OBTAINED RESULTS ON JETSON ORIN NX

Network ResNeSt

Input Resolution 256256
Model Original | FP16
Mean Average Precision 0.852 0.826
FPS 15.7 19.9

THESSORESSIIFSLIIESPPEF OIS EEPILESS IO S OIS PP S SISEEPEC S

Fig. 7. Power Consumption during inference on query subset on Nvidia Jetson
Orin NX.

converted model when deployed on the Jetson Orin NX. The
comparison shows that using TensorRT increases the inference
rate, with only a slight degradation in mAP (2.6 %).

As the Jetson board incorporates a power monitor, we
recorded power consumption during inference on the query
subset (5984 IDs with 13175 images) as shown in Figure 7
and average power consumption is around 8 watts for 20 fps,
or 2.5 FPS/watt.

B. Deployment targeting RPI5+Hailo 8 NPU

The ResNeSt model is not supported by Hailo’s dataflow
compiler. Therefore, we used the basic Resnet-50 model for
inference. Since one operation (pow 3) is not supported in
the aggregation stage either, only the backbone (ResNet-50)
was accelerated with the Hailo 8L NPU. The quantization
performed by Hailo is a mix of FP16 and INT8 depending
on the available resources. After compilation, 60% of the
computation resources and 66% of the memory resources of
the Hailo8L ASIC are used. The quantization steps results in
a 2% loss mAP precision.

The Resnet-50 backbone alone runs at 23 fps. However, with
the pre-processing and post-processing code (Head part with
GlobalAveragePooling) running on the CPU, the framerate
drops to 12 fps. Dispite this, the inference time is sufficient
to track ships travelling at typical nautical speeds. Without
equipment to measure the power consumption of the Rasp-
berry Pi M.2 HAT, we were unable to determine the power
consumption of the Hailo NPU.

C. Deployment targeting Xilinx-AMD Kria KV260 Al Vision
Kit

Like the Hailo8 hardware target, only the backbone Resnet-
50 model is supported by the framework Vitis Al as clamp
and pow operations of GeneralizedMeanPooling layer (Head
part) are not supported by the DPU. Also, due to data
layout difference between Pytorch trainingCNCHW’) and XIR
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Fig. 8. Average Power utilization (mW) for inference on Xilinx KV260.

DPUCNHWC’), a permution is done on inputs. Using Vitis
Al toolset version 3.5, the Resnet-50 model is quantized (Post
Training Quantization) into INT8 representation and then com-
piled targeting DPUCZDXS8G architecture. The post training
quantization step results in a 3.27% loss mAP precision using
the query subset of VesselReid-12K as calibration dataset.
The Resnet-50 backbone alone runs at 24 fps. We recorded
power consumption during inference on a subset of the query
part (5000 images) as shown in Figure 8 and average power
consumption is around 6.8 watts for 24 fps or 3.5 FPS/Watt..

D. Analysis

The Jetson Orin NX is the more powerful device of the
three platforms in terms of detection performance (speed
and accuracy). It achieves the highest inference speed while
maintaining high accuracy with the best vessel Re-ID model,
ResNeSt. However, it requires a higher power budget. The
Hailo and Xilinx platforms suffer from the limitations of
their data flow compilers, which do not support all Re-ID
models and require longer development times. Considering
performance per watt criterion only, the KRIA KV260 kit out-
performs the Jetson Nvidia devices when running Resnet-50
backbone.

VI. DISCUSSIONS AND FUTURE WORKS

To improve the performance of the appearance descriptor,
we plan to build on the approach of [5] and [2] by implement-
ing an enhanced loss function strategy. As depicted in fig 9,
we will first introduce the class feature into a quadruplet loss
function: an image of another vessel from the same category
is added as a second negative sample. This helps to further
differentiate intra-class variations. Then, we will develop an
orientation-guided quintuplet loss that comprises five images:
the anchor image, a positive image from the same viewpoint,
another positive image from a different viewpoint, a negative
image from the same viewpoint and same category, and a
final negative image from a different viewpoint and different
category. This loss function is designed to create more ro-
bust and discriminative feature representations by considering
multiple contextual aspects of the images. To enhance the
performance in ship Re-ID in foggy weather, we will study the
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method described in [9] that proposes a two-branch network
enabling simultaneous learning of defogging and ship Re-ID
tasks in an end-to-end manner. In addition, an atmospheric
scattering model [19] is employed for the synthesis of foggy
ship images. Quantization usually results in a loss of accuracy
due to information lost during the quantization process. For
FPGA target, we will use QAT (Quantization-Aware Training)
to improve the accuracy of quantization. Finally, Since ships
are likely to have distinctive identifying features, such as
flags and printed names, our future research will focus on
employing a text detector and optical character recognition
(OCR). Additionally, as our labeled data have a category field
similar to the AIS ship field, we plan to develop a data
fusion approach that combines visual detection techniques
with Automatic Identification System (AIS) data [20]. Our
previous work has already explored real-time classification
[21], as well as the fusion of data from cameras, radars,
and AIS for classification, situational awareness, and collision
avoidance [22].

VII. CONCLUSION

This paper tackles the topic of Vessel re-identification
using deep learning techniques on embedded edge devices.
Vessel Re-ID is a challenging task that require to consis-
tently recognize the same boat across different time period
contexts and camera viewpoints, despite significant extra-
class variations, and intra-class variations caused by changes
in viewing angles, illumination conditions, image resolution,
occlusions, and appearance alterations such as color shifts.
Moreover, maritime environment faces unique challenges, such
as changing weather, moving sea conditions, and large mon-
itoring areas. These factors can reduce the quality of visual
data and make object detection more difficult. To address
the challenges of maritime surveillance, we proposed a real-
time solution to vessel Re-ID for maritime surveillance on
edge devices. The solution can be carried on drones, equipped
with computer vision systems, positioned as close as possi-
ble to the target areas. Furthermore, integrating image-based
classification and identification with radar and AIS data can
enhance the accuracy of vessel identification. We constructed
a specialized large-scale dataset for marine vessels, compris-
ing 263,488 images associated with 12,777 unique vessel
identities. Each image is annotated with a 7-bin orientation



label and categorized into one of 36 vessel-type classes. This
optimized dataset is employed to train a Siamese Triplet
Network that learns to generate distinctive high-dimensional
embeddings, enabling the computation of similarity distances
between entities. During inference, a single network is used
to produce an embedding for a candidate track, which is
then compared against current detections. The best match
corresponds to the detection with the smallest embedding
distance. The deployment of the trained models on recent
edge devices is considered. We evaluated our solution on a
Jetson ORIN Nx, a Raspberry Pi 5 equipped with a Hailo-8
accelerator and the AMD-Xilinx Kria KV260 Vision Al Kit.
The results demonstrate that the vessel re-identification system
is capable of successfully identifying ships moving at typical
maritime speeds with low power consumption. For example,
20 FPS inference speed is achieved on Jetson Orin NX
with a mean average precision of 82.6% and average power
consumption is around 8 watts. On an embedded system, the
choice of hardware target will depend on weight and power
consumption constraints. For a system with severe constraints,
such as a small flying drone, the best solutions are the Xilinx
Kria KV 260 or Hailo-8 accelerator. But for a unmanned
surface vehicle, the best solution is the Nvidia Jetson board.
It offers greater flexibility, shorter development times, better
performance and reasonable power consumption of 8 W.
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