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Toulouse, France

murat.bronz@enac.fr

Abstract—This article presents a solution to intercept an
agile drone by another agile drone carrying a catching net.
We formulate the interception as a Competitive Reinforcement
Learning problem, where the interceptor and the target drone
are controlled by separate policies trained with Proximal Policy
Optimization (PPO). We introduce a high-fidelity simulation
environment that integrates a realistic quadrotor dynamics model
and a low-level control architecture implemented in JAX, which
allows for fast parallelized execution on GPUs. We train the
agents using low-level control, collective thrust and body rates,
to achieve agile flights both for the interceptor and the target.
We compare the performance of the trained policies in terms
of catch rate, time to catch, and crash rate, against common
heuristic baselines and show that our solution outperforms these
baselines for interception of agile targets. Finally, we demonstrate
the performance of the trained policies in a scaled real-world
scenario using agile drones inside an indoor flight arena.

Index Terms—Reinforcement Learning, Multi-Agent Systems,
Interception, Agile Flight

I. INTRODUCTION

The interception of agile aerial targets using autonomous
drones is a challenging and increasingly relevant problem in
robotics and security. The increasing presence of unmanned
aerial vehicles (UAVs) in unauthorized, restricted airspaces
poses significant safety and security risks and has spurred
interest in developing effective interception strategies [1] In
particular, scenarios such as airspace protection, infrastructure
security, and event safety require the ability to capture or neu-
tralize unauthorized drones with high precision and minimal
collateral risk. Deploying interceptor drones equipped with
nets is a promising approach, but it demands advanced control
capabilities to match or exceed the agility of evasive targets.

Traditional interception methods often rely on accurate
models, preplanned strategies, or predictable target behaviour
[2]. However, modern quadrotor drones can perform highly
dynamic manoeuvres, and will actively evade capture, ren-
dering their trajectories unpredictable and challenging the
effectiveness of classical methods [3].

Recent advances in deep reinforcement learning (RL) have
demonstrated the potential to learn complex, high-dimensional
control policies for drones directly from interaction with the
environment. In particular in drone racing, RL-trained policies
have achieved superhuman performance in highly dynamic
and agile flight tasks [4]. However, the drone racing problem

Fig. 1: A competitive reinforcement learning approach to train
both a pursuer and an evader drone for agile interception tasks.
Both agents learn low-level control policies that enable them
to perform dynamic maneuvers in a high-fidelity simulation
environment.

typically involve navigating static or slowly moving gates,
while interception requires reacting to an adversarial agent
that actively attempts to evade capture.

Competitive Multi-Agent RL (MARL) have shown out-
standing results in adversarial settings, such as games [5], [6].
In this work, we formulate the agile interception problem as
a competitive multi-agent RL task, where both the interceptor
(pursuer) and the target (evader) are controlled by independent
policies trained using Proximal Policy Optimization (PPO) in
a co-evolution framework. Our approach integrates a high-
fidelity quadrotor dynamics model, enabling both agents to
learn agile, physically realistic manoeuvres from low-level
control inputs. Through extensive simulation and real-world
experiments, we show that RL training leads to robust and
adaptive interception and evading strategies, outperforming
heuristic control approaches.

The main contributions of this paper are:



• A competitive MARL framework for agile drone inter-
ception, with both pursuer and evader learning from low-
level control.

• Integration of a realistic quadrotor dynamics model to
enable physically realistic and agile flight behaviors.

• Empirical evaluation demonstrating superior performance
over standard baselines in simulation.

The remainder of the paper is organized as follows. Section
II reviews related work on interception and agile flight. Section
IV and III detail our agile flight simulation environment and
our training methodology. Section V presents experimental
results and comparisons. Section VI and VII conclude and
discuss future directions.

II. RELATED-WORK ON THE AGILE INTERCEPTION
PROBLEM

A. Agile flight

Agile flights in multi-rotors drones are typically character-
ized by the ability to perform large-angle manoeuvres, sustain
high linear and angular accelerations, maintain precise control
near dynamic limits and do so reliably in real-time, often in
complex and cluttered environments. Traditionally, achieving
such agility relied on trajectory optimization coupled with con-
trollers like Model Predictive Control (MPC), often requiring
pre-planned paths and accurate system models [7]. However,
these methods can be brittle when faced with unexpected dis-
turbances of real-world flights. Reinforcement Learning (RL)
has emerged as a powerful alternative, enabling the learning of
complex, non-linear control policies directly from interaction.
Research, such as work from [4] and [8], has demonstrated
RL’s capability to achieve highly dynamic and agile flights
for quadrotors, pushing the boundaries of autonomous aerial
manoeuvring beyond what traditional methods could easily
achieve, particularly in tasks requiring aggressive, near-limits
flight.

B. Interception

Traditional interception methods uses heuristic or optimal
control methods that often rely on accurate models, pre-
planned strategies, or predictable target behaviour. [2]. These
approaches have been historically designed for the control
of missiles and the interception of fixed-wing manned air-
craft. Optimal control methods requires accurate model of
the pursuer and the evader to compute interception trajec-
tories [9]. Such model may not be available or may be too
computationally expensive for real-time adaptation against
unpredictable targets. Heuristic guidance laws, such as Pro-
portional Navigation (PN) or Pure Pursuit, offer computa-
tionally simpler alternatives and are widely used in missile
guidance. However, these methods often assume relatively
simple target manoeuvres and can struggle against highly
agile or adversarial evaders. Among recent works, [10] have
proposed heuristic methods for drone interception of agile
manoeuvring targets, but these still assume a predictable target
model. More recently, learning-based solutions, particularly
MARL have shown promise for developing complex control

policies in adversarial settings. MARL has been explored for
pursuit-evasion games in various contexts, including simulated
environments like Multi-Agent Particle Environments (MPE)
[11] and initiatives like the DARPA AlphaDogfight Trials,
demonstrating the potential to learn sophisticated tactics [12].
For quadrotors, [13] present a RL approach for quadrotor
interception in an urban environment, and [14] uses RL to
give low-level commands for interception, however both these
works consider only the pursuit side, assuming fixed evader
behaviours. The closest work to ours we found is [15] which
uses RL to train both the pursuer and the evader in a co-
evolution framework. However, like most RL approaches [13],
they use high-level control inputs (e.g., velocity commands)
and simplify the dynamics of the quadrotors, which limits
the agility of the learned behaviours. Overall, while RL has
demonstrated potential in interception tasks, existing work
either ignore the adversarial aspect of a learning evader, or
often lacks the integration of highly dynamic capabilities in
both the pursuer and the evader.

C. Our approach

Building upon the challenges highlighted in agile flight
and interception, our approach directly addresses the need
for highly dynamic capabilities in both the pursuer and the
evader. We recognize that interception is fundamentally a
dynamic, adversarial interaction requiring controllers that can
operate effectively near the physical limits of the hardware.
While RL has demonstrated remarkable success in achieving
agile flight and has been applied to interception problems,
to our knowledge, none have focused on training both an
agile pursuer and an agile evader using low-level commands
within a competitive RL framework. Our work fills this gap by
formulating the problem as a competitive multi-agent RL task
where both agents learn physically plausible, agile manoeuvres
through interaction in a realistic environment, to foster robust
and adaptive strategies.

III. AGILE FLIGHT SIMULATION ENVIRONMENT

We use a high-fidelity simulator of the quadrotor dynamics.
The simulator models air-drag, the low-level control archi-
tecture, the motor speeds, and the transmission delays. This
quadrotor model was taken from [16] which include a low-
level control architecture taking mass-normalized collective
thrust and body rates as inputs. We also implemented a
high-level controller: an SE(3) controller [17], following the
implementation from [18]. This controller, combined with the
low-level quadrotor model, allow us to give alternate high-
level commands to the quadrotors, such as position, velocity, or
acceleration commands. The control architecture is illustrated
in Figure 2. Our simulator also computes the collision between
quadrotors, the elements of the arena and the net carried by
the pursuers. This fidelity facilitates the transfer of policies
trained in simulation to the real world.

The simulation framework is entirely written using JAX
[19]. This Python library allows the code to be just-in-time
compiled and lowered to GPU during runtime, resulting in
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Fig. 2: Control architecture used for the quadrotor dynamics
simulation.

fast execution times of up to millions of steps per second by
leveraging the parallelization capabilities of GPUs.

IV. INTERCEPTION OF AN AGILE TARGET USING
REINFORCEMENT LEARNING

Drone neutralisation methods are classified as kinetic or
non-kinetic [1]. Non-kinetic approaches, such as jamming or
spoofing, are ineffective against autonomous drones. Kinetic
methods, including projectiles or collisions, and electromag-
netic weapons, risk causing uncontrolled crashes and debris.
Using a net, towed or projected by the pursuer, avoids these
issues by safely capturing the target; here, we consider a net
taut to the pursuer and released upon capture.

A. Reinforcement Learning

Reinforcement Learning is a type of machine learning
for sequential decision-making. In a rollout phase, an agent
interacts with an uncertain environment which provides it with
a partial observations of its state, takes a series of actions
following a policy and receives a scalar feedback in the form
of rewards. These sequences of observe-act-reward, repeated
over time, form the rollouts. The collected rollouts are then
used to update the policy in a learning phase, which will then
be employed in the rollout phase of the next training iteration.
The goal of the agent is to learn a policy that maximizes the
expected cumulative reward over time.

Multi-Agent Reinforcement Learning (MARL) extends RL
to scenarios with multiple agents interacting in a shared
environment. MARL suffers from the curse of dimensionality
and non-stationarity, as the environment dynamics change as
other agents learn and adapt their policies. Recent works
in MARL adopted centralized training with decentralized
execution (CTDE) [11], where agents have access to global
information during training but operate based on local observa-
tions during execution. In competitive settings, this alleviates
non-stationarity by allowing the agents to access the state and
actions of their opponents during training.

B. Pursuit-evasion problem

We study a pursuit–evasion scenario with two quadrotors,
a pursuer and an evader, operating in an obstacle-free rect-
angular arena of size L × L × H . At the beginning of each
episode, the agents’ initial positions are drawn uniformly at
random inside the arena. The pursuer seeks to capture the

Fig. 3: Schematic of the interception problem. Capture hap-
pens when the distance d between the evader’s centre comes
within a capture distance of the pursuer’s net.

evader as quickly as possible, whereas the evader tries to evade
capture. Capture occurs when the evader’s centre comes within
a capture distance of the pursuer’s rigid, circular net of radius
R, which is mounted on the pursuer and aligned with its body
frame, and represented in Figure 3. Because a single pursuer
cannot intercept a faster evader alone, we assume the pursuer’s
and the evader’s manoeuvring capabilities are identical. Target
detection, state estimation, and trajectory prediction are not
addressed in this work.

Both the evader and the pursuer are forbidden to exit the
boundaries of the arena. In this setting the evader can quickly
learn to fly close to the arena walls to stay safe, exploiting
the pursuer’s fear to avoid boundary violations. To discourage
this behaviour and promote agile evasive flight in the central
region, a narrow buffer zone is added adjacent to every wall;
only the evader is penalized for entering this zone and thus,
the evader is constrained in a smaller volume in the centre of
the arena.

1) Observation, actions, and rewards: At time step t, each
agent’s i ∈ (pursuer, evader) observation oi is composed
of the following elements: self-state observation oself

i , ob-
servation of the opponent oopp

i , and the observation of the
arena bounds and the ground oenv

i . The self-state observa-
tion is oself

i = [vi, vec (Ri))] containing the agent’s linear
velocity vi, and its rotation matrix Ri, with vec(·) being
the flattening function. The observation of the opponent is
ooppi = [po − pi,vo − vi] containing the position and velocity
of the opponent expressed relative to the agent in world coor-
dinates. The observation of the arena bounds and the ground
is oenv

i = [norm (po − pi)]o∈bounds + ground and is composed of
the Euclidean distances from the agent to each arena boundary
and to the ground. We normalize the observations before
feeding them to the neural network. Relative positions are
normalized by the maximum range of view kpi, and velocities
are normalized by a maximum velocity parameter for each
agent kvi.

The control policies are trained using Proximal Policy
Optimization (PPO) [20]. This Actor-Critic method uses two
neural networks for each agent: a policy network and a value
network.

The policy network produces an action ai for each agent,



which is a vector of body rates aωi and a collective thrust athi .
The value networks are only used during training time and

have access to privileged information about the opponent’s
state, which is not available to the policy network. This
alleviates the non-stationarity of the environment due to the
simultaneous learning of both agents [11]. The input of the
value network of each agent is the concatenation of the
position, velocity, and rotation matrix of each agent, as well as
the action taken by the opponent at this time step. This input
is normalized before being fed to the neural network.

The reward of the pursuer rP and the evader rE are given
by:

rP = rcatch − rdist − rcoll − rfail − rcmd,

rE = −rcatch + rdist − rcoll − rfail − rcmd − rbnd.

in which rcatch rewards the pursuer for catching the evader,
rdist penalizes the pursuer for being far from the evader, rfail

penalizes any agent for crashing or going out of bounds, rcoll

penalizes any agent for colliding with the body of their oppo-
nent, and rcmd discourages dynamically infeasible commands.
Instead of terminating the episode upon collision between
agents, we apply a soft continuous penalty rcoll to both agents,
allowing for gradual learning of collision avoidance while
maintaining focus on the primary tasks of pursuit and evasion.
We still terminate the episode if any agent crashes on the
ground or goes out of bounds and apply a hard penalty rfail.
However, neither the evader nor the pursuer receive a reward
when the opponent reaches a failure state to promote actual
pursuit-evasion behaviours rather than forcing the opponent
to crash. Additionally, we add rbnd to the evader’s reward
function, which penalizes it for approaching the arena bounds.

Specifically, the reward terms are:

rcatch = λcatch · 1catch, rdist = λdist ·
∥∥pe − cnet

∥∥
2
,

rcoll = λcoll 1contact, rfail = λfail 1fail,

rcmd = λcmd ∥aω∥. rbnd = ϕbnd(d
bnd),

in which the indicator functions return 1 when their condition
is met : 1catch when catching the evader, 1contact for inter-
agent contact, 1fail for reaching a failure state because of a
ground crash or leaving the arena bounds. cnet is the pursuer’s
catching net-centre position, and aω are the commanded
body rates. ϕbnd is a function that penalizes the evader for
approaching the arena bounds, triggering under a set threshold
and growing exponentially the shorter the distance to the arena
bounds dbnd. λcatch, λdist, λcoll, λterm, λcmd are positive
hyperparameters that balance the different reward terms and
have been tuned to obtain the desired behaviour and listed in
Table I.

TABLE I: Reward coefficients.

Coefficient Value Coefficient Value

λcatch 10.0 λcoll 0.1
λdist 0.001 λfail 30.0
λcmd 2e-04 λbnd 1.0

C. Training details

Rollouts are generated in parallel across 1024 environments.
Episodes start from uniformly sampled initial positions in the
L × L ×H arena; no domain–randomisation of the platform
dynamics is applied. Episodes last up to T = 10 s (1000 time
steps) unless terminated earlier due to capture, crash, or arena
exit.

Each policy network is a two-layer multilayer perceptron
with 256 ReLU units per hidden layer. The output layer
produces the mean and standard-deviation of a multivariate
Gaussian, followed by a tanh squashing to obtain bounded
continuous actions. The value networks mirrors this architec-
ture but ends with a linear output.

The entire pipeline is written in Python using JAX [19],
enabling just-in-time compilation and parallelized execution.
Running on a single machine equipped with an NVIDIA
RTX 4090 (24 GB VRAM), an AMD Ryzen 9 7950X3D
(16 cores, 4.2 GHz) and 128 GB RAM, the system collects
and processes approximately 3.5× 105 environment steps per
second. We train for a total of 2 × 109 environment steps,
corresponding to roughly 1h35 of wall-clock training time.
Training hyperparameters are listed in Table II.

V. EXPERIMENTAL RESULTS

A. Training Results

Figure 4 compares the learning curves of the pursuer and
the evader. The pursuer cumulated return initially rises as the
drone learns to fly and avoid crashes and the first interception
happens. Because the evader’s reward contains an additional
boundary term, its learning progress is intrinsically slower;
it does not reach high-speed flight as early as the pursuer.
The pursuer therefore overfits to an increasingly predictable
evader. However, as the evader also learns to fly and evade,
the pursuer’s return decreases drastically as it can no longer
catch the evader. This also translates into the average episode
length which first increases as both agents learn to hover and
avoid crashes, but soon falls sharply as the pursuer discovers
a quick capture strategy. Eventually, the pursuer finds a new
strategy to catch the evader again, the average episode length

TABLE II: Training hyperparameters.

Hyperparameter Value

Number of parallel environments (per agent) 1024
Rollout length 128
Learning rate 5× 10−4

Discount factor 0.99
Number of PPO epochs per training data batch 15
Number of minibatches per PPO epoch 1
Discount factor 0.99
Lambda value for GAE computation 0.95
Clipping value for PPO updates 0.2
Entropy 0.01
Critic weight in loss function 0.5
Maximum norm of the gradients for a weight update 0.5
Decay learning rates False
Total number of training steps 4× 109



(a) Average cumulated reward over training.

(b) Average episode length.

Fig. 4: Comparison of learning curves and average episode
length.

decreases and the return of the pursuer increases as it learns to
catch the evader more consistently. This behaviour is typical
of co-evolutionary learning [21], and happens multiple times
during the training as both agent cycle through periods of
adaptation and counter-adaptation. Both curves converge to a
near-stationary value, suggesting that the joint policy profile
is approaching a Nash equilibrium.

B. Evaluation in Simulation

We compare the performances of the trained policies with
baseline heuristic methods. For the pursuer, Pure-Pursuit (PP),
a classical interception strategy where the pursuer follows a
straight line towards the position of the evader, and Fast-
Response Proportional Navigation [10] which is an evolution
of Proportional Navigation for manoeuvring multi-rotors. For
the evader, a hovering strategy where the evader tries to main-
tain a fixed position in space, and an Artificial Potential Field
strategy where the evader is repelled by the pursuer and the
boundaries of the arena. We use the potential field formulation
from [22]. In the sake of comparison, these heuristic methods
only access the position and velocity of the opponent agent, as
our RL policies only access this information. How to estimate
the state of the evader in high-speed manoeuvring flights is not

TABLE III: Performances of the pursuer and the evader in a
40x40x14m (Large) and a 8x8x5m (Small) arena.

Pursuer mode
Evader Mode

Small arena Large arena

PP Hov. APF DRL Hov. APF DRL

Catch Rate (%) 96.4 19.5 58.3 100 15.9 24.6
Evade Rate (%) 0.0 47.9 40.0 0.0 66.6 74.6
of which timeout 0.0 0.0 0.8 0.0 0.0 1.1
Crash rates (%)

Pursuer 0.0 47.9 39.3 0.0 53.2 73.5
Evader - 32.0 0.6 - 25.9 0.3
Double 3.6 0.6 1.0 0.0 0.3 0.5

Time to Catch (s)
Mean 2.05 8.29 5.29 6.65 8.72 8.32

Std 1.66 3.48 4.05 3.90 2.94 3.11

FRPN [10] Hov. APF DRL Hov. APF DRL

Catch Rate (%) 97.4 19.6 37.7 97.5 68.8 49.2
Evade Rate (%) 0.1 43.1 59.9 0.0 1.0 47.3
of which timeout 0.0 1.2 0.1 0.0 0.0 20.2
Crash rates (%)

Pursuer 0.1 42.0 59.8 0.0 1.0 27.1
Evader - 36.4 1.3 - 30.2 3.2
Double 2.5 0.8 1.1 2.5 0.0 0.3

Time to Catch (s)
Mean 2.03 8.49 6.88 2.70 4.97 6.72

Std 1.33 3.15 4.03 1.29 3.44 3.67

DRL (Ours) Hov. APF DRL Hov. APF DRL

Catch Rate (%) 90.7 71.8 78.8 20.7 34.0 66.5
Evade Rate (%) 6.6 6.9 16.5 75.6 50.4 31.9
of which timeout 1.0 0.3 2.3 74.0 8.1 14.7
Crash rates (%)

Pursuer 5.6 6.6 14.2 1.6 42.3 17.2
Evader - 20.3 4.1 - 15.4 1.5
Double 0.4 1.0 0.6 3.7 0.2 0.1

Time to Catch (s)
Mean 2.62 4.18 3.78 8.96 7.61 6.62

Std 2.76 3.89 3.60 2.46 3.55 3.34
Hov.: Hovering, APF: Artificial Potential Field
text in blue : best pursuer against this column’s evader
text in orange : best evader against this row’s pursuer

in the scope of this paper. The heuristic baselines give velocity
or acceleration commands that are then converted to body rates
and collective thrust using the SE(3) controller described in
Section III.

The main comparison metrics are the catch rate of the
pursuer, the evade rate of the evader, the time to catch and the
crash rate. The catch rate is the percentage of episodes where
the pursuer successfully catches the evader before a timeout
of 10 seconds. The evade rate is the percentage of episodes
in which the evader avoids capture for 10 seconds or the
pursuer crashes. We also identify three different crash rates:
pursuer crash rate and evader crash rate are the percentage of
episodes where either the pursuer or the evader crashes alone,
and double-crash rate is the percentage of episodes where both
agents crash simultaneously. Finally, the time to catch is the
time taken by the pursuer to catch the evader.

Time-to-catch is naturally biased towards lower values as it
only consider successful catches, thus a weaker pursuer can
appear to have a better time to catch as it would only succeed
in catching the easiest targets without crashing. To alleviate



Fig. 5: Evasive manoeuvres: from top left to bottom right, the evader
(green) performs a vertical escape, a dive, a sharp turn, and a sudden
stop followed by a feint.

Fig. 6: a high roll angle catch: the pursuer (blue)
intercepts the evader (green) with a roll angle of
more than 45 degrees.

this issue, we use a right-censored metric for the time to catch:
if the episode ends because of a crash or a timeout, the time
to catch is considered to be of 10 seconds.

We evaluate the performances of our strategies in two
different settings. First in a large arena of size 40 × 40 × 14
meters, with the evader constrained in a smaller volume of size
20× 20× 4 meters in the centre of the arena. In this setting,
the agents can reach higher speeds and perform long-range
manoeuvres with low risk of crashing into the boundaries. This
is to the advantage of the heuristic pursuer baselines, which do
not account for the presences of boundaries. Then in a smaller
arena of size 8×8×5 meters, with the evader constrained in a
volume of size 6×6×4 meters in the centre of the arena, closer
to indoor voliere flight conditions. In this setting, the agents
are more constrained by the boundaries and have to perform
tighter manoeuvres. For each setting, a specific pursuer and an
evader model was trained for this specific arena size. For each
combination of pursuer and evader strategies, we run 10,000
episodes and report the averaged metrics in Table III.

The learned evader outperforms the moving heuristic
evaders in all settings, achieving a higher evade rate and
lower crash rate against all pursuers. The learned evader is
particularly effective against the heuristic pursuers, which have
a high crash rate when facing agile manoeuvres. Against
FRPN in the larger arena where it is less crash-prone, half
of the successful evasions are due to timeouts, showing that
the learned evader can consistently avoid capture for the full
duration of the episode. This shows that we successfully
trained an agile evader that can exploit the full 3D space to
avoid capture while avoiding crashes.

All the pursuer heuristic baselines performances drop when
facing the agile learned evaders. Their crash rate is high, as it
does not take into account for the presence of boundaries. This

effect is exacerbated in the smaller arena. In comparison, the
learned pursuer that was trained to avoid crashes shows a much
lower crash rate against the agile learned evader. The learned
pursuer has also the highest catch rate and lowest time to catch
against the agile learned evader, showing that it has learned
effective interception strategies against agile manoeuvres while
respecting arena boundaries and minimizing crashes. The low
time-to-catch shows that the learned pursuer succeeds against
the hardest-to-catch, most time-consuming evaders where the
other methods fail or crash.

However, the performances of the learned pursuers drop
significantly when facing the heuristic evaders, especially the
hovering one. While the learned pursuer still display a low
crash rate, its catch rate is much lower than the heuristic
pursuers in the larger arena. This suggests that the learned pur-
suer has overfitted to the strategies of the agile learned evader
encountered during training, and fails to find effective intercep-
tion strategies against less agile evaders. This is especially true
against the hovering evader. It seems to be a very easy target
to catch, but this situation was likely not encountered during
training, as the evader was always trying to escape. Moreover,
the pursuer’s observation do not encode history information,
and cannot infer that the evader is stationary from its current
observed state (position, velocity). As a result, it did not learn
to exploit the lack of movement to optimize its interception
strategy. In fact, it must expect it to flee at any moment. This
is less pronounced in the smaller arena, where the boundaries
further constrain the evader’s movements. It is likely that
the learned pursuer encountered more trajectories where the
evader was close to stationary during training, allowing it to
learn some interception strategies against this type of target.
As a result, the learned pursuer still achieves a higher catch
rate and faster time to catch than the heuristic pursuers against



Fig. 7: Simulation results: A full pursuit-evasion episode using the trained policies. The trajectory on the right is a shortened
version of the full episode for more visibility. We can see the pursuer first missing the evader in a first attempt, then successfully
catching it after a second attempt.

all moving evaders in the smaller arena, primarily due to its
ability to avoid boundaries and crashes.

C. Qualitative Results in Simulation

In this section, we present qualitative results of our trained
policies in the small arena setting (8× 8× 5 m).

As shown in Figure 5, the evader learned a diverse set of
agile evasive manoeuvres, including high accelerations, high
velocity flights, sudden stops, sharp turns, vertical movements,
and feints. In response, the pursuer learned to anticipate these
manoeuvres. We observed the pursuer catching the evader with
very high roll and pitch angles (>45 degrees) (Figure 6).
Despite being not specifically enforced by the reward function
to turn the heading towards the evader, the pursuer learned to
do so in order to maximize the surface of the catching net
facing the evader, which increases the chances of a successful
capture.

It also learned to catch the evader using both sides of the
catching net, to intercept an evader that went behind it without
turning around.

One trajectory obtained is shown in Figure 7. Both the
pursuer and the evader display agile manoeuvres in a very
restricted arena, with velocities of up to ∼ 7.5 m/s. The
pursuer (in blue) is able to catch the evader (in green) after 13
seconds of intense chase, showcasing the ability of the learned
policies to sustain high intensity flights while avoiding crashes.

D. Real-World Demonstration

We demonstrated the trained policies in a real-world sce-
nario in our indoor flight arena of size 8 × 8 × 5 meters.
The policies have been directly transferred from simulation
to reality without any additional fine-tuning or adaptation.
For this flight, the evader was simulated on a ground station
computer, while the pursuer was flying a real quadcopter
equipped with a Betaflight [23] flight controller. The flight logs
were recorded, including and action commands, and analysed
afterward to identify successful catches and the collisions
between the pursuer and the evader. The state of the real
drone is estimated using a motion capture system (OptiTrack)
that provides accurate position and orientation data at 200 Hz
and transferred to the simulation. The neural network policy
was executed remotely on the ground station computer and
the outputted control commands transferred to the drones via
an RF link at 100 Hz. We adopted this Hardware-In-The-
Loop setup to ensure safety during the flights, but it is not
a limitation of our approach as the trained policies can be
executed on-board in a decentralized way.

The pursuer managed to fly without crashing or exiting the
arena during 28 seconds, and successfully caught the evader 7
times during this period. A portion of the recorded trajectory
is shown in Figure 8.

The flight logs were analysed to identify the error between
the simulation and the real-world execution. At each time step,
we computed the error between the expected next state from
the simulation and the actual next state recorded from the



Fig. 8: A portion of the real-world flight trajectory. The pursuer
(blue) successfully caught the evader (green).

real-world flight with the actions given to the policy network.
With a period between time steps at 100Hz of 0.01 seconds,
the position RMSE is 0.009 m on the xy plane and 0.003 m
on the z axis, while the velocity RMSE is 0.070 m/s on the
xy plane and 0.040 m/s on the z axis.

VI. CONCLUSION

In this work, we addressed the challenging problem of
intercepting an agile aerial target using a pursuer drone
equipped with a catching net. We formulated this task as
a competitive multi-agent reinforcement learning problem,
training independent policies for both the pursuer and the
evader using PPO with low-level control inputs (collective
thrust and body rates). A key element of our approach was
the integration of a high-fidelity quadrotor dynamics model
and a multi-agent reinforcement learning framework for the
training of both the pursuer and the evader.

Our simulation results demonstrated that the trained policies
outperformed classical heuristic baselines in simulated inter-
ception tasks of agile evader, achieving higher catch rates and
demonstrating greater robustness against crashes, particularly
when facing agile, learned opponents. Furthermore, the devel-
opment of our simulation environment entirely within the JAX
framework proved crucial, enabling massively parallelized
execution and drastically accelerating the training process,
which made extensive RL training computationally feasible.

While comprehensive quantitative evaluation in the physical
world remains challenging, we successfully demonstrated the
learned policies on agile quadrotors in our indoor flight arena,
validating the potential for zero-shot sim-to-real transfer and
showcasing the practical applicability of our approach.

Overall, this research highlights the effectiveness of Multi-
Agent Competitive Reinforcement Learning for generating
highly agile and reactive control policies for complex robotic
interaction tasks like drone interception.

VII. LIMITATIONS

While our approach demonstrates promising results for agile
drone interception, several limitations should be acknowl-
edged.

First, the sim-to-real gap remains a significant challenge.
Although our simulation uses quadrotor dynamics identified
from real flight data, trained policies remain sensitive to
mismatches between the simulated model and actual hardware.
Uncertainties in parameters like mass, inertia, or motor limits
can degrade real-world performance. Incorporating domain
randomization during training could improve robustness to
such discrepancies.

Second, we observed instances where agents appeared
to overfit to certain interaction patterns. When opponents
deviated from typical behaviors (e.g., flying erratically or
hovering), agents sometimes responded suboptimally or failed
(e.g., crashing), rather than robustly pursuing their objectives.
When training only against the latest version of the opponent,
agents are prone to forget how to deal with previously encoun-
tered strategies, and it limits the generalization capabilities
of the learned policies. Expanding the diversity of opponent
strategies met during training, for example via Self-Play or
Population-Based Training [6], could mitigate overfitting and
improve generalization.

Third, we assume perfect state information for both agents
during training and execution. Incorporating realistic sensor
models and handling partial observability are important for
real-world deployment, where robust perception of the target
in high-velocity flights and state estimation are required but
were not addressed in this study.

Fourth, the current study focuses on a one-vs-one ”dog-
fight” scenario within a bounded, obstacle-free arena. Extend-
ing the approach to handle multiple pursuers and/or evaders,
operate in cluttered environments, or address different objec-
tives like area defense requires further investigation.

Finally, while we demonstrated feasibility in real-world
flights, the quantitative evaluation was primarily conducted in
simulation. A more extensive real-world experimental cam-
paign would be necessary to rigorously quantify performance
metrics like catch rate and time-to-catch under physical con-
ditions.
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