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Abstract—The Binary-Attribute Likelihood-Ratio (BA-LR)
method has been proposed as an explainable speaker verification
system focusing on forensic applications. BA-LR represents a
speech utterance by a binary vector, indicating the presence
or absence of speech attributes. In this work, we introduce a
better founded formulation of BA-LR that can handle more
naturally enrollments with multiple recordings. In addition this
new formulation allows incorporating into the weight of evidence
of each attribute its robustness to mismatch between enrollment
and test conditions, leading to cross-domain scoring.

Index Terms—speaker recognition, explainability, BA-LR, do-
main adaptation, NIST SRE24

I. INTRODUCTION

The speaker verification task (SV) consists in deciding
whether one test utterance was pronounced by a given speaker,
represented by one or more enrollment recordings. Variability
between enrollment and test conditions is a key factor that can
limit system performance. This variability also adds a potential
level of uncertainty to system reliability. When both conditions
are known, this variability is denoted "domain mismatch" or
"cross domain condition". For instance, recent NIST SRE
campaigns [1] have focused on two challenging cross-domain
tasks: cross-language and cross-source speaker verification.

Numerous methods have been proposed to model variability
between conditions and improve performance accordingly [2]–
[6]. Between them, the 4-cov PLDA [7] introduces an explicit
model of the dependence between speaker embedding distri-
butions over two domains and can be used for cross-domain
scoring. These approaches are complementary to normaliza-
tions of the embeddings to limit variability between genders,
languages or channels [8].

Recent SV systems [9]–[11] are based on high-dimensional
embeddings, similar to x-vectors [12]. These systems use a
large neural model with millions of parameters trained on
large, poorly controlled databases. Thanks to their ability
to exploit this considerable amount of data and parameters,
they are able to discriminate between speakers and manage
session variability, thus achieving cutting-edge performance.
However, these systems produce a single score per trial and
are unable to link this score, or parts of it, to a subset of
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input features, certain training examples, or certain parts of the
model. They also often show a significant loss of performance
when a domain mismatch occurs, i.e., when real-life conditions
differ from training conditions, and this loss is difficult to
predict. These two aspects lead to a lack of explainability
and reliability that can significantly limit the deployment
of practical solutions based on these systems. Furthermore,
explainability itself is becoming increasingly necessary due
to regulations such as the EU’s GDPR or AI laws, and is
mandatory in areas such as forensic and investigative speaker
recognition [13]. Explainability is also necessary for reliability,
because understanding and describing how a system works is
essential for certifying its performance under specific working
conditions.

Among several publications on explanability in speaker
recognition [14]–[16], the BA-LR method [17], [18] has
some interesting and specific features. First, BA-LR is an
intrinsically explainable approach that offers three levels of
explainability/interpretability: modelling, scoring and drivers.
BA-LR models a speech utterance using a binary vector
(BA) where a coefficient explicitely indicates the presence
or absence of a given speech attribute. Each of the several
hundreds attributes is shared among a group of speakers. The
BA extractor is trained similarly to recent speaker embedding
extractors, without requiring additional labels. It takes full
advantage of x-vector state-of-the-art approaches but differs in
that it produces binary embeddings and in the behavior of a
coefficient: here, BA(i) = 1 means that the utterance contains
the attribute i. The second level of explainability is scoring.
BA-LR generates log-likelihood ratios (LLR) for each attribute
(BA coefficient) and the final LLR is a simple combination of
them. Finally, the third level is an explanation of the attributes,
providing an analysis of the underlying phonetic factors. This
explainability phase is done after training the system [19].
BA-LR also differs from the main part of other approaches
in that it was introduced for forensic applications and has
been evaluated in this context using a realistic database [20].
Recently, it was also applied to explainable spoofed speech
characterization [21].

In this work, we do not address the tasks of extracting [18]
or characterizing binary attributes [19] but focus on formulat-
ing the BA-LR speaker verification scoring based on statistics



of activation of binary attributes, with the aim of improving
performance in cross-domain trials. Indeed, standard feature-
based adaptation methods [22] are not meant to preserve
the binary structure of embeddings, while model-based cross-
scoring methods do not meet the explainability standards of
BA-LR [5], [7]. Consequently we propose a new formulation
of the BA-LR approach, which takes domain modeling into
account.

In this paper, we make several contributions to the BA-
LR method for speaker verification. We introduce BA-LR-
v2, a new probabilistic formulation of the BA-LR model,
and implement it with a Beta-Bernoulli model [23], [24]. We
propose a simple cross-domain extension of BA-LR scoring
and implement it with a Gaussian copula. This new BA-LR-
v2 with cross-domain modeling is experimentally validated,
both on a controlled experiment on VoxCeleb with simulated
channel degradation and on the challenging NIST SRE24
corpus with cross-source trials. It is particularly effective
at handling multiple enrollment utterances and cross-domain
trials and incorporates the sensitivity of each attribute to
domain mismatch into the weight of evidence.

II. BA-LR-V2 SCORING

The BA-LR scoring model can be summarized by three
hypotheses.

1) The test and enrollment sets of utterances xt and xe

are represented as counts of activations ai and non-
activations ni of N binary attributes.
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2) The binary attributes are independent, which implies that
the LLR can be decomposed into contributions LLRi

from each attribute. This assumption has been partially
verified in [18].
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3) For a given attribute i, LLRi depends on statistics of
activation of the attribute among a reference population.

In this work, we propose a new formulation of the LLR. We
call it BA-LR-v2. We refer to [25] for an in-depth description
of the original BA-LR model. In the two following sections,
we work with a single binary attribute and omit the attribute
index i.

A. Proposed formulation: BA-LR-v2 scoring

We assume that a speaker is represented by a latent variable
p corresponding to the frequency of activation of the attribute
in an utterance. The activation of the attribute for this speaker
follows a Bernoulli distribution with parameter p.

We define the distribution of this probability of activation
among a reference population of speakers and call its density
f . According to this model, the likelihood of a sequence of
observations of the attribute for a given speaker, with counts
of activations (a, n), is given by:

L(a, n) =

∫ 1

p=0

pa(1− p)nf(p)dp (3)

The speaker verification LLR is obtained by grouping
differently counts of activation of enrollment and test obser-
vations of the attribute, in a similar way to [7] for PLDA.

LLR = log
L(at + at, ne + nt)

L(ae, ne)L(at, nt)
(4)

The spirit of the original BA-LR model can be found by
selecting a distribution f with only two possible values of the
probability of activation, interpreted as the groups of speakers
with and without the attribute.

B. Implementation of BA-LR-v2 with a Beta-Bernoulli model

Similar to [23], [24], choosing a Beta distribution, with pa-
rameters α and β, simplifies the computation of the likelihood,
since it is the conjugate of the Bernoulli distribution.

f(p|α, β) = pα−1(1− p)β−1

B(α, β)
(5)

where B(α, β) =
∫ 1

p=0
pα−1(1 − p)β−1dp is the Beta

function.

L(a, n) =
B(α+ a, β + n)

B(α, β)
(6)

Consequently the LLR is given by:

LLR = log
B(α+ at + ae, β + nt + ne)B(α, β)

B(α+ at, β + nt)B(α+ ae, β + ne)
(7)

III. CROSS-DOMAIN SCORING WITH BA-LR-V2

The distribution of attribute activation varies depending on
the domain. This may be due to a domain mismatch with
the training corpus of the attribute extractor, to noise levels
that erase the attribute in an utterance, or to attributes that
disappear under some conditions. For example, the fundamen-
tal frequency is outside of the telephone bandwidth for most
speakers [26].

A. Cross-domain model

We propose to model the variability between probabilities
of activation of an attribute under different conditions. We note
1 and 2 the two domains. A sequence of utterances from the
same speaker is represented by counts of activation and non
activation of the attribute for each condition.

x =

(
a1 n1

a2 n2

)
(8)

We now assume that each speaker is characterized by the
probabilities p1 and p2 of activating the attribute on each
condition. We assume a relationship between these two latent
variables similar to the 4-cov PLDA model [7] and denote
f(p1, p2) the joint density of these probabilities among a
reference population of speakers. Then, the likelihood of a



Fig. 1: Histogram of per-speaker probability of activation on
each domain and estimated joint density for attribute BA386
(VoxCeleb protocol).
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Fig. 2: LLR values with cross-domain BA-LR-v2 for attribute
BA386 (VoxCeleb protocol).

sequence of utterances belonging to the same speaker is given
by:

L =

∫∫
pa

1

1 (1− p1)
n1

pa
2

2 (1− p2)
n2

f(p1, p2)dp1dp2 (9)

B. Implementation with copula

The likelihood can be computed directly, using the empir-
ical joint distribution of a training population of speakers.
In practice, it may be convenient to consider modeling of
the marginal distributions of p1 and p2 separately from the
dependence structure between the two variables. For example,
the marginal distributions may be estimated on two large
corpora representative of each condition whereas we need
a corpus with observations of the same speakers on both
conditions to estimate the dependence between the two vari-
ables. The dependence structure between the two variables
can be modeled with a copula [27]. In our context it is a

Fig. 3: Histogram of per-speaker probability of activation on
each domain and estimated joint density for attribute BA220
(VoxCeleb protocol).
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Fig. 4: LLR values with cross-domain BA-LR-v2 for attribute
BA220 (VoxCeleb protocol).

bivariate cumulative density function defined on [0, 1]2 with
uniform marginal distributions. We model the joint density by
a copula of density c(u, v) and the marginal distributions with
cumulative density functions F1, F2 and densities f1, f2.

f(p1, p2) = c[F1(p1), F2(p2)]f1(p1)f2(p2) (10)

In this first implementation, we retain Beta distributions for
f1 and f2 and select a Gaussian copula [28] for c. It has
a single parameter ρ ∈]− 1, 1[ which encodes the correlation
between the two distributions. ρ can be estimated by maximum
likelihood on a set of utterances with the same speakers on
both conditions. A better model could be selected by an
analysis of the actual joint distributions.

c(p′1, p
′
2|ρ) =

N ((Φ−1(p′1),Φ
−1(p′2))|0, R)

N (Φ−1(p′1)|0, 1)N (Φ−1(p′2)|0, 1)
(11)



where Φ−1 is the inverse of the cumulative densitiy function
of a standard normal distribution N (.|0, 1), and N (.|0, R) is
a multivariate normal distribution with covariance matrix R:

R =

(
1 ρ
ρ 1

)
(12)

The Gaussian copula has been recently applied to speaker
recognition for score-level system fusion [29]. In [29], it
models the dependence between the distributions of scores
of different systems, whereas in our work it models the
dependence between the distributions of a latent variable on
two domains.

With the cross-domain model, likelihood values are no
longer in closed form and require more computation. In a
practical scenario with a large numbers of trials, the maximum
number of observations of the attribute is often known in
advance (one utterance for each enrollment on VoxCeleb1,
three utterances maximum on NIST SRE24) and all required
likelihood values can be precomputed once before inference.

Figures 1, 2, 3, 4 illustrate the impact of the latent variable
joint distribution model on scoring, for attribute BA386 (high
correlation between the two domains) and attribute BA220
(low correlation). Histograms of activation probabilities per
speaker on each domain are shown on the x and y axes,
while the estimated joint density is shown in the center, along
with the corresponding values of the α1, β1, α2, β2 and ρ
parameters. The impact on LLR values is shown in Figures
2 and 4. A weak correlation between the domains results in
lower absolute LLR values for cross-domain trials.

IV. EXPERIMENTS

To assess the validity of the proposed BA-LR scoring, we
conduct two sets of experiments, first on a simulated and
controlled corpus and then on the challenging NIST SRE24
corpus. For both sets of experiments, we use a baseline speaker
verification system based on 256-dimensional embeddings.
We extract vectors of activation of 512 attributes from these
embeddings with a binary autoencoder (BAE) trained with the
protocol described in [18]. We then apply the original BA-LR
(speech-oriented model in [20]), as well as the proposed BA-
LR-v2 scoring method.

A. VoxCeleb protocol with simulated cross-domain trials

The goal of this first experiment is to check the validity
of the proposed cross-domain scoring with a controlled mis-
match between the two conditions. We train the systems on
VoxCeleb2 [30] and evaluate them on VoxCeleb1 [31]. The
first condition consists of the original VoxCeleb utterances,
corresponding to audio from video, with a sampling rate
of 16kHz. For the second condition we apply a telephone
bandpass filter (300-3400Hz) to the original files. Cross-
condition trials are constituted of an enrollment utterance
from the simulated telephone condition and an original test
utterance.

The baseline system is the Wespeaker ResNet34 model with
large-margin finetuning, cosine similarity scoring, and without

AS-norm [11]. The BAE and BA-LR parameters are estimated
on VoxCeleb2.

B. NIST SRE24 protocol

The NIST SRE24 corpus [1] focuses on challenging con-
ditions: cross-lingual trials, among Tunisian Arabic, French
and English, and cross-source trials, including conversational
telephone speech (CTS) and audio from video (AfV). We
evaluate the proposed cross-domain scoring method on cross-
source trials. The two conditions differ not only by bandwidth
but also by the level of noise, the speech content, and even
the number of speakers contained in the test utterance. In
addition, the NIST SRE24 corpus contains trials with multiple
enrollment utterances.

The baseline speaker verification system is a ResNet101
model developed with the kiwano toolkit1. It is trained on the
CTS superset corpus [32] (only on telephone condition), and
all data is downsampled to 8 kHz. The speaker verification
system is trained with the Jeffreys loss [33]. At inference, non
speech regions are removed with rVAD [34]. For evaluation
of the baseline system, a simple preprocessing step is applied
to the embeddings before cosine similarity scoring (centering,
reduction to 100 dimensions with LDA, and length normal-
ization), whereas the original 256-dimensional embeddings
are used for the extraction of binary attributes. The BAE is
trained on the CTS superset corpus. BA-LR parameters are
estimated on the SRE21-eval audio corpus which contains both
conditions (CTS and AfV) but different languages (Cantonese,
English, and Mandarin). For all systems, a per-condition
logistic regression is trained on the SRE24-dev corpus. We
use six conditions corresponding to the columns of Table II
and defined by the enrollment and test channels (CTS or AfV)
and the number of enrollment utterances (1 or 3).

V. RESULTS

A. VoxCeleb experiments

Evaluation of the systems is reported in terms of equal
error rate (EER) in Table I. We report performance on three
conditions corresponding to matched conditions with origi-
nal or simulated telephone utterances, and to cross-domain
scoring with telephone enrollment utterances and original test
utterances2.

The original Wespeaker model achieves competitive perfor-
mance on the original VoxCeleb1 [11]. It suffers from a sig-
nificant but limited performance drop on the unseen simulated
telephone condition. This performance drop is more moderate
for cross-domain trials (twice the error rate of original).

The other systems correspond to different scoring methods
with the same binary attributes. Using binary attributes for
scoring with cosine similarity produces a performance drop,

1https://github.com/mrouvier/kiwano
2For consistency with published results, we report performance with three

digits. However, a calculation of 95 % confidence intervals using a boot-
strap (1000 samplings) taking into account speaker labels [35] provides the
following intervals for the baseline ResNet34-LM model on original/original
condition: [0.51, 1.13] on O-clean, [0.88, 1.09] on E-clean, and [1.63, 1.94]
on H-clean.



TABLE I: Performance on VoxCeleb1 (best BA-LR performance in bold). BA refers to binary attributes.

System

EER (%) on VoxCeleb1
[enrollment condition]/[test condition]

original/original telephone/telephone telephone/original
O-clean E-clean H-clean O-clean E-clean H-clean O-clean E-clean H-clean

ResNet34-LM + cosine similarity [11] 0.814 0.933 1.695 1.803 2.123 4.031 1.462 1.881 3.488

B
A

cosine similarity 1.212 1.322 2.278 2.978 3.293 5.815 2.579 3.198 5.155
BA-LR original 1.255 1.443 2.418 3.286 3.645 6.247 2.973 3.662 5.677
BA-LR-v2 original 1.234 1.343 2.445 2.755 3.007 5.674 2.345 2.792 5.027
BA-LR-v2 telephone 1.404 1.523 2.756 2.462 2.738 5.101 2.489 2.962 5.202
cross-domain BA-LR-v2 - - - - - - 2.287 2.613 4.879

TABLE II: Performance on NIST SRE24-eval audio (best BA-LR performance in bold). BA refers to binary attributes.

System SRE24 eval audio EER (%) on subset of trials
[enrollment condition]-[# enrollment utterances]/[test condition]

CPrimary EER
min act (%) CTS-1/CTS CTS-3/CTS AfV-1/AfV AfV-1/CTS CTS-1/AfV CTS-3/AfV

ResNet101 + cosine similarity 0.698 0.830 10.47 4.73 2.48 7.29 8.06 8.77 6.85

B
A

cosine similarity 0.778 0.861 12.90 5.65 2.93 8.77 10.74 11.41 9.01
BA-LR 0.794 0.801 12.90 5.37 4.43 8.44 10.18 10.74 10.21
BA-LR-v2 0.768 0.812 12.62 5.32 2.69 8.55 9.96 10.52 7.83
cross-domain BA-LR-v2 0.782 0.818 12.46 5.58 2.81 8.33 9.57 10.15 7.68

Fig. 5: Histogram of values of the Gaussian copula correlation
parameter (VoxCeleb protocol) for the 512 attributes. The
parameter models the dependency between probabilities of
activation of an attribute on each domain.

similar on matched and unmatched conditions, for instance
from 4.031% to 5.815% on H-clean telephone/telephone.
The BA-LR model trained on original data achieves worse
performance than cosine similarity, especially for telephone
and cross-domain conditions. The proposed BA-LR-v2 trained
on original data outperforms cosine similarity on the un-
known telephone condition and on the cross-domain condition.
BA-LR-v2 achieves its best performance when its parameters
are trained on matched conditions (BA-LR-v2 original and
telephone).

Finally, the proposed cross-domain BA-LR-v2 method

achieves the best performance for cross-domain trials. This
improvement is statistically significant only on the E-clean
trial list. Figure 5 represents the distribution of the estimated
value of the correlation parameter ρ. Most of the attributes
exhibit a weak to moderate correlation (between 0.2 and 0.6).
The cross-domain BA-LR-v2 model weights the contribution
of each attribute according to this correlation parameter, as
illustrated by Figures 1, 2, 3, 4 for attributes BA386 and
BA220.

B. NIST SRE24 experiments

Evaluation of the systems trained on the NIST SRE corpus
is reported in Table II. The evaluation corpus is SRE24-eval
audio, and we report the official CPrimary , minCPrimary and
EER [1]. In addition, we report the EER on specific subsets
defined by the enrollment and test channels (CTS or AfV) and
the number of enrollment utterances (1 or 3).

The baseline ResNet101 system achieves a CPrimary of
0.830 on the challenging SRE24-audio-eval corpus. The bi-
narization of the embeddings produces an important drop in
performance, more pronounced in terms of EER than in terms
of CPrimary . BA-LR scoring trained on a corpus containing
both CTS and AfV matches cosine similarity for enrollment
with a single utterance. The proposed BA-LR-v2 achieves the
same overall performance as BA-LR, but with a strong im-
provement for trials with multiple enrollment utterances. The
cross-domain BA-LR-v2 improves discrimination performance
for the cross-source trials. Overall, BA-LR systems match the
performance of the baseline ResNet101 system in terms of
CPrimary , corresponding to low false alarm operating points,
but not in terms of EER.



VI. DISCUSSION

BA-LR is evaluated for the first time on the challenging
NIST SRE campaign, demonstrating that explainable systems
can be built with a moderate degradation of performance. We
reach or improve the performance of cosine similarity scoring
on binary attributes with BA-LR scoring, demonstrating that
the drop in performance is not due to the explainable scoring
mechanism but only to the binary attribute extraction step.
Improving this process, particularly to ensure independence
of the attributes, could help reduce the performance gap with
the baseline system.

The new BA-LR-v2 scoring achieves better performance
than the original BA-LR formulation for trials with multiple
enrollment utterances. In addition, it leads to a very natural
cross-domain scoring that relies on the modeling of the depen-
dence between attribute activations on both conditions. From
an explainability point of view, the modeling of the depen-
dence between probabilities of activations on two conditions
is crucial because it allows the weight of evidence of each
attribute to be balanced with the robustness of the attribute
across conditions.

Our first implementation with Gaussian copula leads to a
limited performance improvement for cross-domain scoring.
A better choice of the model of dependence between the
conditions could make this method more efficient, for instance
exploring other families of copulae.

VII. CONCLUSION

We introduce BA-LR-v2, a new formulation of BA-LR,
that bridges the gap with classical speaker verification scoring
models and improves performance for trials with multiple
enrollment utterances. In addition, we model the dependence
between the frequencies of activation of an attribute on two
conditions, which enables cross-domain speaker verification
scoring. Our implementation with a Beta-Bernoulli model and
a Gaussian copula gives consistent improvements over the
original BA-LR model, both in a controlled experiment on
VoxCeleb1 with a simulated channel degradation and on the
challenging NIST SRE24 corpus with cross-source trials. This
reduces the performance gap between the explainable BA-LR
system and state-of-the-art speaker verification systems, while
bringing a new dimension of explainability by introducing
into the weight of evidence of each attribute its robustness
to condition mismatch.
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